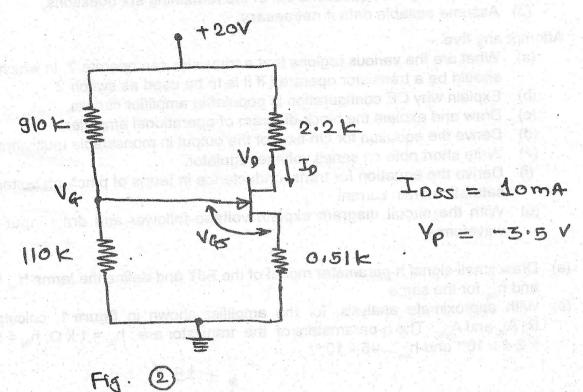
S.E. (Com?) (Sem III) (Rev) Exam may 2009 Electronis Derkell Linear Circuits May 09 HP 12 (REVISED COURSE) Con. 2663-09. [Total Marks 100 (3 Hours) N.B.: — (1) Question No. 1 is compulsory. (2) Attempt any four questions out of the remaining six questions. (3) Assume suitable data if necessary. 20 Attempt any five :-(a) What are the various regions that a transistor can operate? In which region should be a transistor operated if it is to be used as switch? Explain why CE configuration is popular in amplifier circuits. (c) Draw and explain the block-diagram of operational amplifier. (d) Derive the equation for On-time of the output in monostable multivibrator. (e) Write short note on series voltage regulator. (f) Derive the equation for transconductance in terms of pinch-off voltage and saturation drain current. With the circuit diagram explain voltage-follower and draw input-output (g) waveforms. (a) Draw small-signal h-parameter model of the BJT and define the terms hie, hre, hfe 2. and hoe for the same. With approximate analysis, for the amplifier shown in figure 1, calculate the R_{i} , A_{is} and A_{vs} . The h-parameters of the transistor are : h_{ie} = 1 k Ω , h_{fe} = 50, h_{re} $= 2.4 \times 10^{-4}$ and $h_{00} = 25 \times 10^{-6}$. + 15 V 1.5k 38K 24K 820-


Fig. 1

[TURN OVER

(SOMELL) (Rev) Examp May 2000

- (a) For n-channel FET $I_{Dss} = 5.8$ mA, $V_p = -3$ V and $V_{GS} = -2$ V find I_D , g_m , g_{mo} . (b) For the network shown in **figure** 2 determine I_D , V_{GS} , V_G , V_D , V_S and V_{Ds} .

- (a) Using IC 555 design Astable multivibrator for output frequency of 5 kHz and duty 10 cycle of 70%. Draw the related waveforms.
 - (b) Explain in detail any two applications of a monostable multivibrators. 10
- (a) Design a voltage regulator using IC 723 to meet the following specifications : 10 $V_o = 5V$, $I_o = 75$ mA, $V_{in} = 15$ V,
 - $V_{\text{sense}} = 0.7 \text{ V}$ $I_{sc} = 150 \text{ mA},$ (b) Explain the digital Ramp ADC with neat block-diagram. 10
- (a) Design a practical integrator for the output frequency of 5 kHz. Draw the input-10 output wave forms. 10
 - (b) Draw and explain one application of an instrumentation amplifier.

- Write short notes on (any four) :-
 - (a) Inverting Schmitt-trigger
 - Properties of Ideal Op-Amp*. (b)
 - ZCD (c)
 - Foldback current Limiting protection. (d)
 - Small signal amplifiers.

20