The C Preprocessor
L ast revised July 2000
for GCC version 2

Richard M. Sallman

The C Preprocessor

The C preprocessor isa macro processor that is used automatically by the C compiler to transform your
program before actual compilation. It is called a macro processor because it allows you to define macros,
which are brief abbreviations for longer constructs.

The C preprocessor is intended only for macro processing of C, C++ and Objective C source files. For
macro processing of other files, you are strongly encouraged to use aternatives like M4, which will likely
give you better results and avoid many problems. For example, normally the C preprocessor does not
preserve arbitrary whitespace verbatim, but instead replaces each sequence with a single space.

For use on C-like source files, the C preprocessor provides four separate facilities that you can use as you
seefit:

Inclusion of header files. These are files of declarations that can be substituted into your program.
Macro expansion. Y ou can define macr os, which are abbreviations for arbitrary fragments of C
code, and then the C preprocessor will replace the macros with their definitions throughout the
program.

Conditional compilation. Using special preprocessing directives, you can include or exclude parts of
the program according to various conditions.

Line control. If you use a program to combine or rearrange source files into an intermediate file
which is then compiled, you can use line control to inform the compiler of where each source line
originally came from.

C preprocessors vary in some details. This manual discusses the GNU C preprocessor, which provides a
small superset of the features of SO Standard C.

In its default mode, the GNU C preprocessor does not do a few things required by the standard. These are
features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program
which does not expect them. To get strict ISO Standard C, you should use the ™ - st d=c89" or " -

st d=c99' options, depending on which version of the standard you want. To get all the mandatory
diagnostics, you must aso use " - pedant i ¢' . See section Invoking the C Preprocessor.

Global Actions: Actions made uniformly on all input files.

Directives: General syntax of preprocessing directives.

Header Files: How and why to use header files.

Macros: How and why to use macros.

Conditionals: How and why to use conditionals.

Assertions: How and why to use assertions.

Line Control: Use of line control when you combine source files.
Other Directives: Miscellaneous preprocessing directives.
Output : Format of output from the C preprocessor.
Implementation: Implementation limits and behavior.

Unreliable Features: Undefined behavior and deprecated features.
Invocation: How to invoke the preprocessor; command options.
Concept Index: Index of concepts and terms.

Index: Index of directives, predefined macros and options.

Transformations M ade Globally

Most C preprocessor features are inactive unless you give specific directives to request their use.
(Preprocessing directives are lines starting with a ™ #' token, possibly preceded by whitespace; see section
Preprocessing Directives). However, there are four transformations that the preprocessor always makes on
all the input it receives, even in the absence of directives. These are, in order:

1. Trigraphs, if enabled, are replaced with the character they represent.

2. Backslashnewline sequences are deleted, no matter where. This feature allows you to break long
lines for cosmetic purposes without changing their meaning. Recently, the nonttraditional
preprocessor has relaxed its treatment of escaped newlines. Previously, the newline had to
immediately follow a backdash. The current implementation allows whitespace in the form of
spaces, horizontal and vertical tabs, and form feeds between the backslash and the subsequent
newline. The preprocessor issues awarning, but treats it as a valid escaped newline and combines
the two lines to form a single logical line. This works within comments and tokens, including multi-
line strings, as well as between tokens. Comments are not treated as whitespace for the purposes of
this relaxation, since they have not yet been replaced with spaces.

3. All comments are replaced with single spaces.

4. Predefined macro names are replaced with their expansions (see section Predefined Macros).

For end-of- line indicators, any of \n, \r\n, \n\r and \r are recognised, and treated as ending asingleline. Asa
result, if you mix these in a single file you might get incorrect line numbering, because the preprocessor
would interpret the two-character versions as ending just one line. Previous implementations would only
handle UNIX-style \n correctly, so DOS-style \r\n would need to be passed through afilter first.

The first three transformations are done before all other parsing and before preprocessing directives are
recognized. Thus, for example, you can split a line mechanically with backslash-newline anywhere (except
within trigraphs since they are replaced first; see below).

/*

[#[*
*/ defi\
ne FO
O 10\

20

isequivaent into ~ #def i ne FOO 1020' .

There isno way to prevent a backslash at the end of a line from being interpreted as a backslashtnewline.
For example,

"fool\
bar"

isequivaent to " f oo\ bar", not to " f oo\ \ bar " . To avoid having to worry about this, do not use the GNU
extension which permits multi-line strings. Instead, use string constant concatenation:

"fool\"
"bar"

Y our program will be more portable this way, too.
There are afew things to note about the above four transformations.

Comments and predefined macro names (or any macro names, for that matter) are not recognized
inside the argument of an ™ #i ncl ude' directive, when it is delimited with quotes or with ~ <' and
>'
Comments and predefined macro names are never recognized within a character or string constant.
SO "trigraphs’ are converted before backslash-newlines are deleted. If you write what looks like a
trigraph with a backslash- newline inside, the backslashtnewline is deleted as usual, but it is too late
to recognize the trigraph. Thisis relevant only if you usethe ™ -t ri graphs' optionto enable
trigraph processing. See section Invoking the C Preprocessor.

The preprocessor handles null characters embedded in the input file depending upon the context in which
the null appears. Note that here we are referring not to the two-character escape sequence "\0", but to the
single character ASCIl NUL.

There are three different contexts in which a null character may appear:

Within comments. Here, null characters are silently ignored.

Within a string or character constant. Here the preprocessor emits a warning, but preserves the null

character and passes it through to the output file or compiler front-end.

In any other context, the preprocessor issues a warning, and discards the null character. The

preprocessor treats it like whitespace, combining it with any surrounding whitespace to become a

single whitespace block. Representing the null character by "@", this means that code like
#define Xr@

isequivaent to
#define X 1

and X is defined with replacement text "1".

Preprocessing Dir ectives

Most preprocessor features are active only if you use preprocessing directives to request their use.

Preprocessing directives are lines in your program that start with ~ #' . Whitespace is allowed before and
after the ™ #' . The ™ #' isfollowed by an identifier that is the directive name. For example, ~ #def i ne’
is the directive that defines a macro.

Sincethe ™ #' must be the first token on the ling, it cannot come from a macro expansion if you wish it to
begin a directive. Also, the directive name is not macro expanded. Thus, if * f 00" isdefined as a macro
expandingto ~ def i ne' , that does not make ™ #f 00" avalid preprocessing directive.

The set of valid directive names is fixed. Programs cannot define new preprocessing directives.
Some directive names require arguments; these make up the rest of the directive line and must be separated

from the directive name by whitespace. For example, ~ #def i ne' must be followed by a macro name and
the intended expansion of the macro. See section Object-like Macros.

A preprocessing directive cannot cover more than one line. It may be logically extended with backslash
newline, but that has no effect on its meaning. Comments containing newlines can aso divide the directive
into multiple lines, but a comment is replaced by a single space before the directive is interpreted.

Header Files

A header fileis afile containing C declarations and macro definitions (see section Macros) to be shared
between several source files. Y ou request the use of a header file in your program with the C preprocessing

directive” #i ncl ude' .

Header Uses: What header files are used for.

Include Syntax: How to write " #i ncl ude' directives.
Include Operation: What * #i ncl ude' does.

Once-Only: Preventing multiple inclusion of one header file.
Inheritance: Including one header file in another header file.
System Headers. Specia treatment for some header files.

Uses of Header Files

Header files serve two kinds of purposes.

System header files declare the interfaces to parts of the operating system. Y ou include them in your
program to supply the definitions and declarations you need to invoke system calls and libraries.

Y our own header files contain declarations for interfaces between the source files of your program.
Each time you have a group of related declarations and macro definitions all or most of which are
needed in several different sourcefiles, it is a good ideato create a header file for them.

Including a header file produces the same results in C compilation as copying the header file into each
source file that needs it. Such copying would be time-consuming and error-prone. With a header file, the
related declarations appear in only one place. If they need to be changed, they can be changed in one place,
and programs that include the header file will automatically use the new version when next recompiled. The
header file eliminates the labor of finding and changing all the copies as well as the risk that a failure to find
one copy will result in inconsistencies within a program.

The usua convention isto give header files names that end with * . h' . Avoid unusua characters in header
file names, as they reduce portability.

The " #i ncl ude' Directive

Both user and system header files are included using the preprocessing directive * #i ncl ude' . It hasthree
variants:

#i ncl ude <file>
This variant is used for system header files. It searches for afile named filein alist of directories
specified by you, then in a standard list of system directories. Y ou specify directories to search for
header files with the command option ™ - | ' (see section Invoking the C Preprocessor). The option
“-nostdi nc' inhibits searching the standard system directories; in this case only the directories
you specify are searched. Thefirst * >' character terminates the file name. The file name may
containa’ <' character.

#i ncl ude "file"
This variant is used for header files of your own program. It searches for a file named filefirst in the
current directory, then in the same directories used for system header files. The current directory is
the directory of the current input file. It istried first because it is presumed to be the location of the

files that the current input file refersto. (If the ™ - | - ' option is used, the specia treatment of the
current directory isinhibited. See section Invoking the C Preprocessor.) Thefirst * "' character

terminates the file name. In both these variants, the argument behaves like a string constant in that
comments are not recognized, and macro names are not expanded. Thus, in ™ #i ncl ude
<x/ *y>' the / *' doesnot start acomment and the directive specifiesinclusion of a system
header file named * x/ *y' . However, in either variant, if backslashes occur within file, they are
considered ordinary text characters, not escape characters. None of the character escape sequences
appropriate to string constants in C are processed. Thus, ™ #i ncl ude "x\ n\\y"' specifiesa
filename containing three backslashes.

#i ncl ude anything else
This variant is called a computed #include. Any ~ #i ncl ude' directive whose argument does not
fit the above two forms is a computed include. The text anything else is checked for macro calls,
which are expanded (see section Macros). When this is done, the result must match one of the above

two variants -- in particular, the expansion must form a string literal token, or a sequence of tokens
surrounded by angle braces. See section Implementation-defined Behavior and |mplementation
Limits This feature allows you to define a macro which controls the file name to be used at a later
point in the program. One application of thisis to allow a site-specific configuration file for your
program to specify the names of the system include files to be used. This can help in porting the
program to various operating systems in which the necessary system header files are found in
different places.

How ~ #i ncl ude' Works

The ™ #i ncl ude' directive works by directing the C preprocessor to scan the specified file as input before
continuing with the rest of the curent file. The output from the preprocessor contains the output already
generated, followed by the output resulting from the included file, followed by the output that comes from
the text after the ™ #i ncl ude' directive. For example, given a header file* header . h* asfollows,

char *test ();

and amain program called " program c¢' that uses the header file, like this,

int Xx;
#i ncl ude "header. h"

main ()

{
printf (test ());

}
the output generated by the C preprocessor for * program ¢' asinput would be

int x;
char *test ();

main ()

{
printf (test ());

}

Included files are not limited to declarations and macro definitions; those are merely the typical uses. Any
fragment of a C program can be included from another file. The include file could even contain the
beginning of a statement that is concluded in the containing file, or the end of a statement that was started in
the including file. However, a comment or a string or character constant may not start in the included file
and finish in the including file. An unterminated comment, string constant or character constant in an
included file is considered to end (with an error message) at the end of the file.

It is possible for a header file to begin or end a syntactic unit such as a function definition, but that would be
very confusing, so don't do it.

The line following the " #i ncl ude' directiveis always treated as a separate line by the C preprocessor,
even if the included file lacks a fina newline.

Once-Only Include Files

Very often, one header file includes another. It can easily result that a certain header file is included more
than once. This may lead to errors, if the header file defines structure types or typedefs, and is certainly
wasteful. Therefore, we often wish to prevent multiple inclusion of a header file.

The standard way to do thisis to enclose the entire real contents of the file in a conditional, like this:

#i f ndef FI LE_FOO_SEEN
#define FI LE_FOO SEEN

the entire file

#endif /* FILE_FOO SEEN */

The macro FI LE_FOO_SEEN indicates that the file has been included once aready. In a user header file, the
macro name should not begin with © ' . In a system header file, this name should beginwith © ' to avoid
conflicts with user programs. In any kind of header file, the macro name should contain the name of the file
and some additional text, to avoid conflicts with other header files.

The GNU C preprocessor is programmed to notice when a header file uses this particular construct and
handle it efficiently. If a header file is contained entirely ina ™ #i f ndef ' conditional, modulo whitespace
and comments, then it remembers that fact. If a subsequent ™ #i ncl ude' specifies the same file, and the
macro inthe * #i f ndef ' isalready defined, then the directive is skipped without processing the specified
fileat all.

In the Objective C language, thereisavariant of ~ #i ncl ude' cdled” #i nport' whichincludes afile,
but does so at most once. If you use ™ #i nport' instead of ~ #i ncl ude' , then you don't need the
conditionals inside the header file to prevent multiple execution of the contents.

“#inport' isobsolete becauseit is not awell designed feature. It requires the users of a header file -- the
applications programmers --- to know that a certain header file should only be included once. It is much
better for the header file's implementor to write the file so that users don't need to know this. Using

" #i f ndef ' accomplishesthis goal.

Inheritance and Header Files

Inheritance is what happens when one object or file derives some of its contents by virtual copying from
another object or file. In the case of C header files, inheritance means that one header file includes another
header file and then replaces or adds something.

If the inheriting header file and the base header file have different names, then inheritance is
sraightforward: simply write ™ #i ncl ude " base"' in the inheriting file.

Sometimes it is necessary to give the inheriting file the same name as the base file. Thisisless
straightforward.

For example, suppose an application program uses the system header ~ sys/ si gnal . h' , but the version of
“/usr/include/sys/signal.h' onaparticular system doesn't do what the application program expects. It
might be convenient to define a"local" version, perhaps under the name

“/usr/local/include/ sys/signal.h',tooverride or add to the one supplied by the system.

Y ou can do this by compiling with the option ™ - | . * , and writing afile sys/ si gnal . h' that does what
the application program expects. Making this file include the standard " sys/ si gnal . h' isnot so easy ---
writing” #i ncl ude <sys/ si gnal . h>' inthat file doesn't work, because it includes your own version
of the file, not the standard system version. Used in that file itself, this leads to an infinite recursion and a
fatal error in compilation.

“#i nclude </usr/include/sys/signal.h>" wouldfind the proper file, but that is not clean,
since it makes an assumption about where the system header file is found. This is bad for maintenance, since
it means that any change in where the system's header files are kept requires a change somewhere el se.

The clean way to solve this problemisto use " #i ncl ude_next ' , which means, "Include the next file
with this name." This directive works like ™ #i ncl ude' except in searching for the specified file: it starts
searching the list of header file directories after the directory in which the current file was found.

Suppose you specify “ -1 /usr/l ocal /i ncl ude' , andthelist of directoriesto search also includes
*/usr/include' ; and suppose both directories contain ~ sys/ si gnal . h' . Ordinary ~ #i ncl ude
<sys/ si gnal . h>" findsthefileunder */ usr/1 ocal /i ncl ude' . If that file contains

“#incl ude_next <sys/signal . h>' | it starts searching after that directory, and finds the file in
“lusr/include'.

“#i ncl ude_next' isaGCC extension and should not be used in programs intended to be portable to
other compilers.

System Headers

The header files declaring interfaces to the operating system and runtime libraries often cannot be written in
strictly conforming C. Therefore, GNU C gives code found in system headers special treatment. Certain
categories of warnings are suppressed, notably those enabled by * - pedanti c' .

Normally, only the headers found in specific directories are considered system headers. The set of these
directories is determined when GCC is compiled. There are, however, two ways to add to the set.

The™ - i syst enmi command line option adds its argument to the list of directories to search for headers,

justlike ™ - 1" . Inaddition, any headers found in that directory will be considered system headers. Note that
unlike™ - 1", you must put a space between ™ - i syst enl and its argument.

All directoriesnamed by ™ - i syst eml are searched after all directoriesnamed by ™ - | ' , no matter what
their order was on the command line. If the same directory isnamed by both ™ - 1" and ™ -i systemi , " -

| ' wins; itisasifthe™ -i system option had never been specified at all.

Thereisaso adirective, " #pr agna GCC syst em header' , which tells GCC to consider the rest of
the current include file a system header, no matter where it was found. Code that comes before the
“#pragma' inthefilewill not be affected.

“#pragma GCC syst em header' hasno effect in the primary sourcefile.

M acros

A macro is a sort of abbreviation which you can define once and then use later. There are many complicated
features associated with macros in the C preprocessor.

Object-like Macros: Macros that aways expand the same way.

Function-like Macros: Macros that accept arguments that are substituted into the macro expansion.
Macro Varargs: Macros with variable number of arguments.

Predefined: Predefined macros that are always available.

Stringification: Macro arguments converted into string constants.

Concatenation: Building tokens from parts taken from macro arguments.

Undefining: Cancelling a macro's definition.

Redefining: Changing a macro's definition.

Poisoning: Ensuring a macro is never defined or used.

Macro Pitfalls: Macros can confuse the unwary. Here we explain several common problems and
strange features.

Object-like Macros

An object-like macro isakind of abbreviation. It is a name which stands for a fragment of code. Some
people refer to these as manifest constants.

Before you can use a macro, you must define it explicitly withthe ™ #def i ne' directive. ~ #def i ne' is
followed by the name of the macro and then the token sequence it should be an abbreviation for, which is
varioudly referred to as the macro's body, expansion or replacement list. For example,

#def i ne BUFFER_SI ZE 1020

defines amacro named * BUFFER_SI ZE' as an abbreviation for thetoken * 1020" . If somewhere after
this™ #def i ne' directive there comes a C statement of the form

foo = (char *) xmalloc (BUFFER_SI ZE);
then the C preprocessor will recognize and expand the macro " BUFFER _SI ZE' |, resulting in

foo = (char *) xmalloc (1020);

The use of al upper case for macro names is a standard convention. Programs are easier to read when it is
possible to tell at a glance which names are macros.

Normally, a macro definition can only span asingle logical line, like all C preprocessing directives.
Comments within a macro definition may contain newlines, which make no difference since each comment
is replaced by a space regardless of its contents.

Apart from this, there is no restriction on what can go in a macro body provided it decomposes into valid
preprocessing tokens. In particular, parentheses need not balance, and the body need not resemble valid C
code. (If it does not, you may get error messages from the C compiler when you use the macro.)

The C preprocessor scans your program sequentially, so macro definitions take effect at the place you write
them. Therefore, the following input to the C preprocessor

foo = X;
#define X 4

bar = X;
produces as output
foo = X;

bar = 4;

When the preprocessor expands a macro name, the macro's expansion replaces the macro invocation, and
the result is re-scanned for more macros to expand. For example, after

#def i ne BUFSI ZE 1020
#def i ne TABLESI ZE BUFSI ZE

the name " TABLESI ZE' when used in the program would go through two stages of expansion, resulting
ultimately in ~ 1020" .

Thisis not the same as defining * TABLESI ZE' tobe™ 1020' . The #def i ne' for " TABLESI ZE'
uses exactly the expansion you specify -- inthiscase, " BUFSI ZE' -- and does not check to see whether it
too contains macro names. Only when you use " TABLESI ZE' isthe result of its expansion scanned for
more macro names. See section Cascaded Use of Macros.

Macros with Arguments

An object-like macro is always replaced by exactly the same tokens each time it is used. Macros can be
made more flexible by taking arguments. Arguments are fragments of code that you supply each time the
macro is used. These fragments are included in the expansion of the macro according to the directions in the
macro definition. A macro that accepts arguments is called a function-like macr o because the syntax for
using it looks like a function call.

To define a macro that uses arguments, you write a” #def i ne' directivewith alist of parameters in
parentheses after the name of the macro. The parameters must be valid C identifiers, separated by commas
and optionally whitespace. The ™ (' must follow the macro name immediately, with no space in between. If

you leave a space, you instead define an object- like macro whose expansion beginswitha™ (' , and often
leads to confusing errors at compile time.

As an example, here is a macro that computes the minimum of two numeric values, as it is defined in many
C programs:

#define mn(X, Y) ((X) <(Y) ?2 (X) : (Y))

(Thisis not the best way to define a"minimum" macro in GNU C. See section Duplication of Side Effects,
for more information.)

To invoke a function like macro, you write the name of the macro followed by alist of argumentsin
parentheses, separated by commas. The invocation of the macro need not be restricted to a single logical
line - it can cross as many lines in the source file as you wish. The number of arguments you give must
match the number of parameters in the macro definition; empty arguments are fine. Examples of use of the
macro m n' include min (1, 2)' and min (x + 28, *p)'.

The expansion text of the macro depends on the arguments you use. Each macro parameter is replaced
throughout the macro expansion with the tokens of the corresponding argument. Leading and trailing
argument whitespace is dropped, and all whitespace between the tokens of an argument is reduced to a
single space. Using the samemacro ™" m n' definedabove, mi n (1, 2)' expandsinto

((1) <(2) 2 (1) : (2)

where™ 1' has been substituted for * X' and ™ 2' for ™ Y' .

Likewise, mn (x + 28, *p)' expandsinto

((x +28) < (*p) ? (x +28) : (*p))

Parentheses within each argument must balance; a comma within such parentheses does not end the
argument. However, there is no requirement for square brackets or braces to balance, and they do not

prevent a comma from separating arguments. Thus,

macro (array[x = vy, x + 1])

passes two argumentstomacro: " array[x = y' and x + 1]'.If youwanttosupply ~array[x =
y, X + 1]' asanargument, you must writeitas array[(x =y, x + 1)]',whichisequivaent
C code.

After the arguments have been substituted into the macro body, the resulting expansion replaces the macro
invocation, and re-scanned for more macro calls. Therefore even arguments can contain calls to other
macros, either with or without arguments, and even to the same macro. For example, " min (m n (a,
b), c¢)' expandsinto thistext:

((((a) < (b) ? (a) : (b))) < (c)
? (((a) < (b) ? (a) : (b)))

()

(Line breaks shown here for clarity would not actually be generated.)

If amacro f oo takes one argument, and you want to supply an empty argument, simply supply no
preprocessing tokens. Since whitespace does not form a preprocessing token, it is optional. For example,
“foo ()', foo ()" and bar (, arg2)'.

Previous GNU preprocessor implementations and documentation were incorrect on this point, insisting that
afunctionlike macro that takes a single argument be passed a space if an empty argument was required.

If you use a macro name followed by something other thana™ (' (after ignoring any whitespace that might
follow), it does not form an invocation of the macro, and the preprocessor does not change what you have
written. Therefore, it is possible for the same identifier to be a variable or function in your program as well
as amacro, and you can choose in each instance whether to refer to the macro (if an actual argument list
follows) or the variable or function (if an argument list does not follow). For example,

#define foo(X) X
foo bar foo(baz)

expandsto " f oo bar baz' . Such dua use of one name could be confusing and should be avoided
except when the two meanings are effectively synonymous: that is, when the name is both a macro and a
function and the two have similar effects. You canthink of the name smply as a function; use of the name
for purposes other than calling it (such as, to take the address) will refer to the function, while calls will
expand the macro and generate better but equivalent code.

For example, you can use afunction named " mi n' in the same source file that defines the macro. If you

write” & n' with no argument list, you refer to the function. If you write " mi n (x, bb) "' ,withan

argument list, the macro is expanded. If youwrite ™ (m n) (a, bb)',wherethename™ mi n' isnot

followed by an open-parenthesis, the macro is not expanded, so you wind up with a call to the function
mn'.

In the definition of a macro with arguments, the list of argument names must follow the macro name
immediately with no space in between. If there is a space after the macro name, the macro is defined as
taking no arguments, and all the rest of the line is taken to be the expansion. The reason for thisisthat it is
often useful to define a macro that takes no arguments and whose definition begins with an identifier in
parentheses. This rule makes it possible for you to do either this:

#define FOO(x) - 1/ (x)
(which defines ™ FOO to take an argument and expand into minus the reciprocal of that argument) or this:
#define BAR (x) - 1/ (x)

(which defines” BAR' to take no argument and alwaysexpandinto " (x) - 1 / (x)").

Note that the uses of a macro with arguments can have spaces before the left parenthesis; it's the definition
where it matters whether there is a space.

Macros with Variable Numbers of Arguments

In the ISO C standard of 1999, a macro can be declared to accept a variable number of arguments much as a
function can. The syntax for defining the macro is similar to that of afunction. Here is an example:

#define eprintf(...) fprintf (stderr, __VA ARGS_)

Here ... ' isavariableargument. In the invocation of such a macro, it represents the zero or more
tokens until the closing parenthesis that ends the invocation, including any commas. This set of tokens
replaces the identifier __ VA _ARGS__ in the macro body wherever it appears. Thus, we have this expansion:
eprintf ("%:%l: ", input_file_nane, |ine_nunber)

==>

fprintf (stderr, "%:%: " , input_file_nanme, |ine_nunber)

Withina ™ #def i ne' directive, ISO C mandates that the only place the identifier __VA_ARGS__ can appear
isin the replacement list of a variable-argument macro. It may not be used as a macro name, macro
argument name, or within a different type of macro. It may aso be forbidden in open text; the standard is
ambiguous. We recommend you avoid using it except for its defined purpose.

If your macro is complicated, you may want a more descriptive name for the variable argument than
__VA_ARGS__. GNU cpp permits this, as an extension. Y ou may write an argument name immediately

beforethe ™ . . . ' ; that name is used for the variable argument. The epri nt f macro above could be written
#define eprintf(args...) fprintf (stderr, args)

using this extension. Y ou cannot use __VA_ARGS__ and this extension in the same macro.

We might instead have defined eprintf as follows:

#define eprintf(format, ...) fprintf (stderr, format, _ VA ARGS)

This formulation looks more descriptive, but cannot be used as flexibly. There is no way to produce
expanded output of

fprintf (stderr, "success!\n")

because, in standard C, you are not allowed to |eave the variable argument out entirely, and passing an
empty argument for the variable arguments will not do what you want. Writing

eprintf ("success!\n",)

produces

fprintf (stderr, "success!\n",)
where the extra comma originates from the replacement list and not from the arguments to eprintf.

There is another extension in the GNU C preprocessor which deals with this difficulty. First, you are
allowed to leave the variable argument out entirely:

eprintf ("success!\n")

Second, the ™ ##' token paste operator has a special meaning when placed between a comma and a variable
argument. If you write

#define eprintf(format, ...) fprintf (stderr, format, ##_ VA ARGS)

and the variable argument is left out whenthe “ epri nt f' macro is used, then the comma before the
“##' will be deleted. This does not happen if you pass an empty argument, nor does it happen if the token
preceding ~ ##' isanything other than a comma.

Previous versions of the preprocessor implemented this extension much more generally. We have restricted
it in order to minimize the difference from the C standard. See section Undefined Behavior and Deprecated
Features.

Predefined Macros

Several object-like macros are predefined; you use them without supplying their definitions. They fall into
two classes: standard macros and system-specific macros.

Standard Predefined: Standard predefined macros.
Nonstandard Predefined: Nonstandard predefined macros.

Standard Predefined M acr os

The standard predefined macros are available with the same meanings regardless of the machine or
operating system on which you are using GNU C. Their names all start and end with double underscores.
Those preceding __GNUC__ in thistable are standardized by 1SO C; the rest are GNU C extensions.

__FILE__
This macro expands to the name of the current input file, in the form of a C string constant. The
precise name returned is the one that was specified in ™ #i ncl ude' or astheinput file name
argument. For example, " "/ usr/ | ocal /i ncl ude/ myheader. h"' isapossible expansion of

this macro.
__LINE__

This macro expands to the current input line number, in the form of a decimal integer constant.
While we call it a predefined macro, it's a pretty strange macro, since its "definition™ changes with
each new line of source code. Thisand ™ __FI LE__ " are useful in generating an error message to

report an inconsistency detected by the program; the message can state the source line at which the
inconsistency was detected. For example,
fprintf (stderr, "Internal error: "
"negative string length "
"%d at %, line %.",
length, __FILE , __LINE_);

A " #incl ude' directive changestheexpansionsof °__ FILE ' and™ __LINE__' to
correspond to the included file. At the end of that file, when processing resumes on the input file that
contained the ™ #i ncl ude' directive, theexpansonsof © FILE ' and” __ LINE_ ' revert
to the values they had beforethe ™ #i ncl ude' (but™ LI NE__' isthen incremented by one as
processing moves to the line after the ™ #i ncl ude'). Theexpansionsof both™ FILE ' and
_LINE__'" aedteredifa” #1 i ne' directiveis used. See section Combining Source Files.

__DATE _
This macro expands to a string constant that describes the date on which the preprocessor is being

run. The string constant contains eleven characters and looks like ™ " Feb 1 1996""' .
TI VE

This macro expands to a string constant that describes the time at which the preprocessor is being

run. The string constant contains eight characters and looks like ™ " 23: 59: 01" " .
STDC

This macro expands to the constant 1, to signify that thisis 1SO Standard C. (Whether that is actually
true depends on what C compiler will operate on the output from the preprocessor.) On some hosts,
system include files use a different convention, where™ __ STDC__ ' isnormally O, but is 1 if the
user specifies strict conformance to the C Standard. The preprocessor follows the host convention
when processing system include files, but when processing user files it follows the usual GNU C

convention. This macro is not defined if the ™ -t radi ti onal ' option is used.
__STDC_VERSI ON__

This macro expands to the C Standard's version number, along integer constant of the form

T yyyymmL' where yyyy and mm are the year and month of the Standard version. This signifies
which version of the C Standard the preprocessor conformsto. Like™ STDC ' , whether this
version number is accurate for the entire implementation depends on what C compiler will operate
on the output from the preprocessor. This macro is not defined if the ™ -t radi ti onal ' optionis

used.

__GNUC__
This macro is defined if and only if thisis GNU C. This macro is defined only when the entire GNU
C compiler isin use; if you invoke the preprocessor directly, ™ GNUC__ ' isundefined. The vaue

identifies the major version number of GNU CC (" 1' for GNU CC version 1, which is now

obsolete, and ~ 2' for version 2).
__GNUC_M NOR__

The macro contains the minor version number of the compiler. This can be used to work around
differences between different releases of the compiler (for example, if GCC 2.6.3 is known to
support afeature, you cantest for __ GNUC__ > 2 || (__GNUC__ == 2 & _ GNUC_ M NOR__ >=
6)).

__G\luc_)P,)ATCHL EVEL__
This macro contains the patch level of the compiler. This can be used to work around differences
between different patch level releases of the compiler (for example, if GCC 2.6.2 is known to
contain a bug, whereas GCC 2.6.3 contains a fix, and you have code which can workaround the
problem depending on whether the bug is fixed or not, you cantest for __GNUC__ > 2 ||

(_GNUC__ ==2 & __GNUCMNOR_ >6) || (_GWC _==2 &% GNUC MNOR__ == 6
&% __GNUC_PATCHLEVEL__ > 3)).
GNUG

The GNU C compiler defines this when the compilation languageisC++; use™ __ GNUG__' to

distinguish between GNU C and GNU C++.
__cplusplus

The 1SO standard for C++ requires predefining thisvariable. Youcanuse ™ __cpl uspl us' totest
whether a header is compiled by a C compiler or a C++ compiler. The compiler currently uses a
valueof ~ 1' , instead of thevalue ™ 199711L" , which would indicate full conformance with the
standard.

__STRICT_ANSI __
GNU C defines this macro if and only if the ™ - ansi ' switch was specified when GNU C was
invoked. Its definition is the null string. This macro exists primarily to direct certain GNU header

files not to define certain traditional Unix constructs which are incompatible with SO C.
__BASE FILE__

This macro expands to the name of the main input file, in the form of a C string constant. Thisis the

source file that was specified on the command line of the preprocessor or C compiler.
__INCLUDE_LEVEL__

This macro expands to a decimal integer constant that represents the depth of nesting in include files.
The vaue of this macro isincremented on every * #i ncl ude' directive and decremented at the
end of every included file. It starts out at O, it's value within the base file specified on the command

line.
__VERSI ON__

This macro expands to a string constant which describes the version number of GNU C. The string is

normally a sequence of decimal numbers separated by periods, suchas™ " 2. 6. 0"" .
__OPTIM ZE__

GNU CC defines this macro in optimizing compilations. It causes certain GNU header files to define
alternative macro definitions for some system library functions. Y ou should not refer to or test the
definition of this macro unless you make very sure that programs will execute with the same effect

regardless.
__CHAR UNSI GNED__

GNU C defines this macro if and only if the data type char is unsigned on the target machine. It
exists to cause the standard header file " 1i mits. h* to work correctly. Y ou should not refer to this
macro yourself; instead, refer to the standard macros defined in “1i ni ts. h' . The preprocessor uses
this macro to determine whether or not to sign-extend large character constants written in octal; see
section The ™ #i f ' Directive.

__REG STER PREFI X__
This macro expands to a string (not a string constant) describing the prefix applied to CPU registers
in assembler code. You can use it to write assembler code that is usable in multiple environments.
For example, inthe " m68k- aout ' environment it expands to the null string, but in the ™ mM68k -

cof f' environment it expands to the string ™ % .
__USER LABEL_PREFI X__

Similar to __REG STER_PREFI X__, but describes the prefix applied to user generated labelsin
assembler code. For example, inthe ™ m68k- aout ' environment it expandsto the string = ' , but
inthe” m68k- cof f' environment it expands to the null string. This does not work with the ™ -
mo- under scor es' option that the i386 OSF/rose and m88k targets provide nor with the ™ -
ncal | *' options of the rs6000 System V Release 4 target.

Nonstandard Predefined M acros

The C preprocessor normally has several predefined macros that vary between machines because their
purpose is to indicate what type of system and machine isin use. This manual, being for al systems and
machines, cannot tell you exactly what their names are; instead, we offer alist of some typical ones. You
canuse cpp - dM to seethevaues of predefined macros; see section Invoking the C Preprocessor.

Some nonstandard predefined macros describe the operating system in use, with more or less specificity.
For example,

uni x
“uni X' isnormally predefined on al Unix systems.
BSD
" BSD' ispredefined on recent versions of Berkeley Unix (perhaps only in version 4.3).

Other nonstandard predefined macros describe the kind of CPU, with more or less specificity. For example,

vax

“vax' ispredefined on Vax computers.
nc68000

" nmc68000" ispredefined on most computers whose CPU is a Motorola 68000, 68010 or 68020.
n68k

"mb68k' isalso predefined on most computers whose CPU is a 68000, 68010 or 68020; however,
some makersuse " nt68000" and someuse ™ Nn68k" . Some predefine both names. What happens

in GNU C depends on the system you are using it on.
M68020

" M68020" has been observed to be predefined on some systems that use 68020 CPUs -- in addition
to” nc68000' and ™ nB8k' , which are less specific.

_AMROK
_AM29000

Both™ AMROK' and” _AMR9000' are predefined for the AMD 29000 CPU family.
ns32000

"ns32000" ispredefined on computers which use the National Semiconductor 32000 series CPU.

Y et other nonstandard predefined macros describe the manufacturer of the system. For example,

sun
“sun' ispredefined on al models of Sun computers.
pyr
" pyr' ispredefined on al models of Pyramid computers.

sequent
“sequent ' ispredefined on all models of Sequent computers.

These predefined symbols are not only nonstandard, they are contrary to the 1SO standard because their
names do not start with underscores. Therefore, the option ™ - ansi ' inhibits the definition of these
symboals.

Thistendsto make ™ - ansi ' usdless, since many programs depend on the customary nonstandard
predefined symbols. Even system header files check them and will generate incorrect declarations if they do
not find the names that are expected. Y ou might think that the header files supplied for the Uglix computer
would not need to test what machine they are running on, because they can smply assume it is the Uglix;
but often they do, and they do so using the customary names. As aresult, very few C programs will compile
with ™ - ansi ' . Weintend to avoid such problems on the GNU system.

What, then, should you do in an ISO C program to test the type of machine it will run on?
GNU C offers a parallel series of symbols for this purpose, whose names are made from the customary ones
by adding™ ' at the beginning and end. Thus, the symbol __vax__ would be available on a Vax, and so

on.

The set of nonstandard predefined names in the GNU C preprocessor is controlled (when cpp isitsalf
compiled) by the macro © CPP_PREDEFI NES' , which should be a string containing ™ - D' options,
separated by spaces. For example, on the Sun 3, we use the following definition:

#def i ne CPP_PREDEFI NES "- Dnt68000 - Dsun - Duni x - Dn68k"
This macro is usually specified in“tm h' .

Stringification

Stringification means turning a sequence of preprocessing tokens into a string literal. For example,

stringifying " f oo (z)' resultsin " "foo (z)"'.

In the C preprocessor, stringification is possible when macro arguments are substituted during macro
expansion. When a parameter appears preceded by a™ #' token in the replacement list of a functiorlike
macro, it indicates that both tokens should be replaced with the stringification of the corresponding
argument during expansion. The same argument may be substituted in other places in the definition without
stringification if the argument name appears in those places with no preceding ™ #' .

Here is an example of a macro definition that uses stringification:

#tdefi ne WARN_I F(EXP) \
do { if (EXP) \

fprintf (stderr, "Warning: " #EXP "\n"); } \
while (0)

Here the argument for * EXP' issubstituted once, as-is, intothe " i f ' statement, and once, stringified, into
theargumentto fprintf'.The do' and while (0)' areakludgeto make it possible to write
"WARN_I F (arg); ' ,whichthe resemblanceof - WARN_| F' to afunction would make C programmers
want to do; see section Swallowing the Semicolon

The stringification feature is limited to transforming the tokens of a macro argument into a string constant:
there is no way to combine the argument with surrounding text and stringify it al together. The example

above shows how an equivalent result can be obtained in ISO Standard C, using the fact that adjacent string
constants are concatenated by the C compiler to form a single string constant. The preprocessor stringifies
the actual value of - EXP' into a separate string constant, resulting in text like

do { if (x == 0) \
fprintf (stderr, "Warning: " "x == 0" "\n"); } \
whil e (0)

but the compiler then sees three consecutive string constants and concatenates them into one, producing
effectively

do { if (x ==0) \
fprintf (stderr, "Warning: x == 0\n"); } \
while (0)

Stringification in C involves more than putting double-quote characters around the fragment. The
preprocessor backslashescapes the surrounding quotes of string literals, and all backslashes within string
and character constants, in order to get avalid C string constant with the proper contents. Thus, stringifying

p = "foo\n";" resultsin™"p = \"foo\\n\";"" .However, backsashes that are not inside string
or character constants are not duplicated: “ \ n* by itself stringifiesto ™ "\ n"" .

Whitespace (including comments) in the text being stringified is handled according to precise rules. All
leading and trailing whitespace is ignored. Any sequence of whitespace in the middle of the text is
converted to a single space in the stringified resullt.

Concatenation

Concatenation means joining two strings into one. In the context of macro expansion, concatenation refers
to joining two preprocessing tokens to form one. In particular, atoken of a macro argument can be
concatenated with another argument's token or with fixed text to produce a longer name. The longer name
might be the name of a function, variable, type, or a C keyword; it might even be the name of another
macro, in which case it will be expanded.

When you define a function-like or object- like macro, you request concatenation with the special operator
" ##' inthe macro's replacement list. When the macro is called, any arguments are substituted without
performing macro expansion, every -~ ##' operator is deleted, and the two tokens on either side of it are
concatenated to form a single token.

Consider a C program that interprets named commands. There probably needs to be a table of commands,
perhaps an array of structures declared as follows:

struct command

{

char *nane;
void (*function) ();

b

struct command commands[] =

{
{ "quit", quit_command},
{ "hel p", hel p_comuand},

.

It would be cleaner not to have to give each command name twice, once in the string constant and once in
the function name. A macro which takes the name of a command as an argument can make this unnecessary.
The string constant can be created with stringification, and the function name by concatenating the argument
with™ _conmand' . Hereishow it is done:

#defi ne COWAND(NAME) { #NAME, NAME ## _command }
struct command commands[] =

COVMAND (quit),
COMMAND (hel p),

};”

The usual case of concatenation is concatenating two names (or a name and a number) into a longer name.
Thisisn't the only valid case. It is aso possible to concatenate two numbers (or a number and a name, such
as 1.5 and” e3') into anumber. Also, multi-character operatorssuch as™ +=" can be formed by
concatenation. However, two tokens that don't together form a valid token cannot be concatenated. For
example, concatenation of ~ x' ononesideand ”~ +' on the other is not meaningful because those two
tokens do not form a valid preprocessing token when concatenated. UNDEFINED

Keep in mind that the C preprocessor converts comments to whitespace before macros are even considered.
Therefore, you cannot create a comment by concatenating " /' and ™ *' :the / *' sequencethat starts a
comment is not atoken, but rather the beginning of a comment. Y ou can freely use comments next to = ##'
in amacro definition, or in arguments that will be concatenated, because the comments will be converted to
gpaces at first sight, and concatenation operates on tokens and so ignores whitespace.

Undefining Macros

To undefine a macro means to cancedl its definition. Thisis done with the ™ #undef ' directive. * #undef '
is followed by the macro name to be undefined.

Like definition, undefinition occurs at a specific point in the source file, and it applies starting from that
point. The name ceases to be a macro name, and from that point on it is treated by the preprocessor asiif it
had never been a macro name.

For example,

#defi ne FOO 4
x = FOG
#undef FOO

x = FOO

expands into
X = 4;

X = FOG

In this example, FOO had better be a variable or function as well as (temporarily) a macro, in order for
the result of the expansion to be valid C code.

Thesameform of ~ #undef ' directive will cancel definitions with arguments or definitions that don't
expect arguments. The " #undef ' directive has no effect when used on a name not currently defined as a
macro.

Redefining Macros

Redefining a macro means defining (with ™ #def i ne') anamethat is already defined as a macro.

A redefinition istrivia if the new definition is transparently identical to the old one. Y ou probably wouldn't
deliberately write atrivial redefinition, but they can happen automatically when a header file is included
more than once (see section Header Files), so they are accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it provokes a warning message from the
preprocessor. However, sometimes it is useful to change the definition of a macro in mid-compilation. Y ou
can inhibit the warning by undefining the macro with - #undef ' before the second definition.

In order for aredefinition to be trivial, the parameter names must match and be in the same order, and the
new replacement list must exactly match the one already in effect, with two possible exceptions:

Whitespace may be added or deleted at the beginning or the end of the replacement list. In a sense
thisis vacuous, since strictly such whitespace doesn't form part of the macro's expansion.
Between tokens in the expansion, any two forms of whitespace are considered equivalent. In
particular, whitespace may not be eliminated entirely, nor may it be added where there previoudly
wasn't any.

Recall that a comment counts as whitespace.

As aparticular case of the above, you may not redefine an object-like macro as a function-like macro, and
vice-versa

Poisoning Macros

Sometimes, there is an identifier that you want to remove completely from your program, and make sure
that it never creeps back in. To enforce this, the ™ #pr agma GCC poi son' directive can be used.
“#pragma GCC poi son' isfollowed by alist of identifiers to poison, and takes effect for the rest of the
source. You cannot ~ #undef ' apoisoned identifier or test to see if it's defined with ™ #i f def ' .

For example,

#pragma GCC poison printf sprintf fprintf
sprintf(sonme_string, "hello");

will produce an error.

Pitfalls and Subtleties of Macros

In this section we describe some specia rules that apply to macros and macro expansion, and point out
certain cases in which the rules have counterintuitive consequences that you must watch out for.

Misnesting: Macros can contain unmatched parentheses.

Macro Parentheses: Why apparently superfluous parentheses may be necessary to avoid incorrect
grouping.

Swallow Semicolon: Macros that look like functions but expand into compound statements.

Side Effects: Unsafe macros that cause trouble when arguments contain side effects.

Self- Reference: Macros whose definitions use the macros own names.

Argument Prescan: Arguments are checked for macro calls before they are substituted.

Cascaded Macros: Macros whose definitions use other macros.

Newlines in Args: Sometimes line numbers get confused.

I mproperly Nested Constructs

Recall that when a macro is called with arguments, the arguments are substituted into the macro body and
the result is checked, together with the rest of the input file, for more macro calls.

It is possible to piece together a macro call coming partially from the macro body and partially from the
arguments. For example,

#define doubl e(x) (2*(x))
#define call _with _1(x) x(1)

wouldexpand " cal | _with_1 (double)' into” (2*(1))".

Macro definitions do not have to have balanced parentheses. By writing an unbalanced open parenthesisin a
macro body, it is possible to create a macro call that begins inside the macro body but ends outside of it. For
example,

#define strange(file) fprintf (file, "% %",

éi}ange(stderr) p, 35)

Thisbizarre example expandsto " f printf (stderr, "% %", p, 35)'!

Unintended Grouping of Arithmetic

Y ou may have noticed that in most of the macro definition examples shown above, each occurrence of a
macro argument name had parentheses around it. In addition, another pair of parentheses usually surround
the entire macro definition. Here iswhy it is best to write macros that way.

Suppose you define a macro as follows,
#define ceil _div(x, y) (x +y - 1) [vy

whose purpose is to divide, rounding up. (One use for this operation is to compute how many " i nt '
objects are needed to hold a certain number of * char ' objects.) Then supposeit is used as follows:

a =ceil_div (b &c, sizeof (int));

This expands into

a = (b &c + sizeof (int) - 1) / sizeof (int);

which does not do what is intended. The operator-precedence rules of C make it equivalent to this:
a = (b & (c + sizeof (int) - 1)) / sizeof (int);

What we want is this:

a =((b &c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as

#tdefine ceil _div(x, y) ((x) + (y) - 1) [/ (y)

provides the desired resullt.

Unintended grouping can result in another way. Consider * si zeof ceil _div(1l, 2)'.Tha hasthe
appearance of a C expression that would compute the size of thetypeof “cei |l _div (1, 2)', butin
fact it means something very different. Here is what it expands to:

sizeof ((1) + (2) - 1) / (2)

Thiswould take the size of an integer and divide it by two. The precedence rules have put the division
outsdethe ™ si zeof ' when it was intended to be inside.

Parentheses around the entire macro definition can prevent such problems. Here, then, is the recommended
way to define” cei | _div':

#define ceil _div(x, y) (((x) + (y) - 1) I/ (y))

Swallowing the Semicolon

Often it is desirable to define a macro that expands into a compound statement. Consider, for example, the
following macro, that advances a pointer (the argument ~ p' says where to find it) across whitespace
characters:

#define SKIP_SPACES(p, limt) \
{ register char *lim= (limt); \

while (p!'=1im { \
Hf (prr 1=) \
p--; break; }}}

Here backslash newline is used to split the macro definition, which must be a single logical line, so that it
resembles the way such C code would be laid out if not part of a macro definition.

A call to this macro might be " SKI P_SPACES (p, |im"' . Strictly speaking, the call expandsto a
compound statement, which is a complete statement with no need for a semicolon to end it. However, since
it looks like a function call, it minimizes confusion if you can use it like a function call, writing a semicolon

afterward, asin * SKI P_SPACES (p, lim;"

This can cause trouble before ™ el se' statements, because the semicolon is actually anull statement.
Suppose you write

if (*p !=0)
SKI P_SPACES (p, lim;
else ...

The presence of two statements -- the compound statement and a null statement -- in betweenthe " i f'
condition and the ™ el se' makesinvalid C code.

The definition of the macro ™ SKI P_SPACES' can be atered to solve this problem, usinga™ do . . .
whi | e' statement. Here is how:

#define SKIP_SPACES(p, limt) \
do { register char *lim= (limt); \
while (p!'=1im { \

if (*p++ !'=" ") { \

p--; break; }}} \

while (0)
Now * SKI P_SPACES (p, |im;"' expandsinto
do {...} while (0);

which is one statement.

Duplication of Side Effects

Many C programs defineamacro ™ ni n' , for "minimum”, likethis:

#define min(X,) ((X) <(Y) 2 (X : (V)

When you use this macro with an argument containing a side effect, as shown here,
next = min (x +vy, foo (2));

it expands as follows:

next = ((x +y) < (foo (z)) ? (x +vy) : (foo (2)));

where” X + y' hasbeen substituted for * X' and foo (z)' for Y'.

Thefunction " f 00" isused only once in the statement as it appears in the program, but the expression
"foo (z)' hasbeen substituted twice into the macro expansion. Asaresult, f oo' might be called two
times when the statement is executed. If it has side effects or if it takes a long time to compute, the results
might not be what you intended. We say that * mi n' isan unsafe macro.

The best solution to this problem isto define ™ mi n' inaway that computes the valueof " f oo (z) "' only
once. The C language offers no standard way to do this, but it can be done with GNU C extensions as
follows:

#define mn(X, Y) \
({ typeof (X) _x =(X), _y =(¥V; \
(Lx<_y)?_x: _y })

If you do not wish to use GNU C extensions, the only solution is to be careful when using the macro
“m n' . For example, you can caculatethevalueof " f oo (z)', saveitinavariable, and use that
variablein " mi n' :

#define min(X, Y) ((X) <(Y) ?2 (X : (Y))
{..

int tem= foo (2);
next = mn (x +vy, tenm;

}

(where we assumethat * f 00" returnstype i nt').

Self-Referential M acr os

A self-referential macro is one whose name appears in its definition. A special feature of 1SO Standard C is
that the self-reference is not considered a macro call. It is passed into the preprocessor output unchanged.

Let's consider an example:

#define foo (4 + foo)
where” f 00" isaso avariable in your program.

Following the ordinary rules, each referenceto " f 00" will expandinto ™ (4 + fo0o0)' ; thenthiswill be
rescanned and will expandinto ™ (4 + (4 + foo0))"' ;andsoonuntil it causes afata error (memory
full) in the preprocessor.

However, the special rule about self-reference cuts this process short after one step, at “ (4 + foo)"' .
Therefore, this macro definition has the possibly useful effect of causing the program to add 4 to the value
of foo' wherever f 00" isreferred to.

In most cases, it is abad idea to take advantage of this feature. A person reading the program who sees that
“foo' isavariable will not expect that it is a macro as well. The reader will come across the identifier
“foo' inthe program and think its value should be that of the variable " f 00" , whereas in fact the value is
four greater.

The special rule for self- reference applies aso to indirect self-reference. This is the case where a macro x
expandsto useamacro " y' , andtheexpansionof " y' refersto the macro ™ x' . Theresulting reference to
“x" comesindirectly from the expansion of ~ x' , soit isaself-reference and is not further expanded. Thus,
after

#define x (4 +vy)
#define y (2 * x)

"x' wouldexpandinto” (4 + (2 * x))'.Clear?

Suppose " y' isused elsewhere, not from the definition of * x' . Thentheuse of * x' in the expansion of
“y' isnot asdf-reference because " X' isnot "in progress'. So it does expand. However, the expansion of
" x' containsareferenceto " y' , and that is an indirect self-reference now because " y' is"in progress'.
Theresultisthat " y' expandsto™ (2 * (4 + vy))'.

This behavior is specified by the 1ISO C standard, so you may need to understand it.

Separ ate Expansion of Macro Arguments

We have explained that the expansion of a macro, including the substituted arguments, is re-scanned for
macro calls to be expanded.

What really happens is more subtle: first each argument is scanned separately for macro calls. Then the
resulting tokens are substituted into the macro body to produce the macro expansion, and the macro
expansion is scanned again for macros to expand.

The result is that the arguments are scanned twice to expand macro calls in them.

Most of the time, this has no effect. If the argument contained any macro calls, they are expanded during the
first scan. The result therefore contains no macro calls, so the second scan does not change it. If the
argument were substituted as given, with no prescan, the single remaining scan would find the same macro
calls and produce the same results.

Y ou might expect the double scan to change the results when a self-referential macro is used in an argument
of another macro (see section Self-Referential Macros): the self-referential macro would be expanded once
in the first scan, and a second time in the second scan. However, thisis not what happens. The self-
references that do not expand in the first scan are marked so that they will not expand in the second scan
either.

The prescan is not done when an argument is stringified or concatenated. Thus,

#define str(s) #s
#define foo 4
str (foo)

S

expandsto " " f 00" ' . Once more, prescan has been prevented from having any noticeable effect.

More precisely, stringification and concatenation use the argument tokens as given without initially
scanning for macros. The same argument would be used in expanded form if it is substituted elsewhere
without stringification or concatenation.

#define str(s) #s lose(s)
#define foo 4
str (foo)

expandsto " "foo0" | ose(4)'.

Y ou might now ask, "Why mention the prescan, if it makes no difference? And why not skip it and make
the preprocessor faster?' The answer is that the prescan does make a difference in three specia cases:

Nested calls to a macro.
Macros that call other macros that stringify or concatenate.
Macros whose expansions contain unshielded commas.

We say that nested calls to a macro occur when a macro's argument contains a call to that very macro. For
example, if * f' isamacro that expectsoneargument, f (f (1))' isanested pair of calsto ™ f' .The
desired expansion is made by expanding " f (1) ' and substituting that into the definitionof ~ f* . The
prescan causes the expected result to happen. Without the prescan, " f (1) ' itself would be substituted as

an argument, and theinner use of * f ' would appear during the main scan as an indirect self-reference and
would not be expanded. Here, the prescan cancels an undesirable side effect (in the medical, not
computational, sense of the term) of the special rule for self-referential macros.

Prescan causes trouble in certain other cases of nested macro cals. Here is an example:

#define foo a,b

#define bar(x) |ose(x)
#define lose(x) (1 + (x))

bar (f 0o)

Wewould like " bar (f oo) ' toturninto™ (1 + (foo))',whichwouldthenturninto™ (1 +

(a, b))’ .Instead, " bar (f 00)"' expandsinto " | ose(a, b) ', and you get an error because| ose
requires a single argument. In this case, the problem is easily solved by the same parentheses that ought to
be used to prevent misnesting of arithmetic operations:

#define foo (a,b)
#define bar(x) l|ose((x))

The problem is more serious when the operands of the macro are not expressions; for example, when they
are statements. Then parentheses are unacceptable because they would make for invalid C code:

#define foo { int a, b; ... }

In GNU C you can shield the commasusingthe ™ ({...})
into an expression:

congtruct which turns a compound statement

#define foo ({ int a, b; ... })
Or you can rewrite the macro definition to avoid such commas:
#define foo { int a; int b; ... }

There is aso one case where prescan is useful. It is possible to use prescan to expand an argument and then
stringify it -- if you use two levels of macros. Let's add a new macro ~ xst r ' to the example shown above:

#define xstr(s) str(s)
#define str(s) #s
#define foo 4

xstr (foo)

Thisexpandsinto " "4"' ,not " "f 00" "' . Thereason for the difference is that the argument of ~ xstr' is
expanded at prescan (because ™ xst r' does not specify stringification or concatenation of the argument).
The result of prescan then forms the argument for “ st r' .~ str' usesitsargument without prescan
because it performs stringification; but it cannot prevent or undo the prescanning already doneby ~ xstr' .

Cascaded Use of M acros

A cascade of macros is when one macro's body contains a reference to another macro. Thisis very common
practice. For example,

#defi ne BUFSI ZE 1020
#defi ne TABLESI ZE BUFSI ZE

Thisisnot at al the same asdefining ™ TABLESI ZE' tobe™ 1020' . The ™ #defi ne' for

" TABLESI ZE' uses exactly the body you specify -- in thiscase, " BUFSI ZE' -- and does not check to see
whether it too is the name of a macro.

It's only when you use " TABLESI ZE' that the result of its expansion is checked for more macro names.

This makes a difference if you change the definition of * BUFSI ZE' at some point in the source file.

" TABLESI ZE' , defined as shown, will always expand using the definition of * BUFSI ZE' that is
currently in effect:

#def i ne BUFSI ZE 1020
#def i ne TABLESI ZE BUFSI ZE
#undef BUFSI ZE

#def i ne BUFSI ZE 37

Now ~ TABLESI ZE' expands (intwo stages) to ~ 37" . (The ™ #undef' isto prevent any warning about
the nontrivial redefinition of BUFSI zE.)

Newlines in Macro Arguments

The invocation of afunctionlike macro can extend over many logical lines. The ISO C standard requires
that newlines within a macro invocation be treated as ordinary whitespace. This means that when the
expansion of afunctionlike macro replaces its invocation, it appears on the same line as the macro name
did. Thus line numbers emitted by the compiler or debugger refer to the line the invocation started on, which
might be different to the line containing the argument causing the problem.

Here is an example illustrating this:

#define ignore_second_arg(a,b,c) a; c¢
i gnore_second_arg (foo (),

i gnored (),
syntax error);

The syntax error triggered by thetokens ™ synt ax error' resultsin an error message citing line three --
the line of ignore_second_arg --- even though the problematic code comes from line five.

Conditionals

In amacro processor, a conditional is a directive that allows a part of the program to be ignored during
compilation, on some conditions. In the C preprocessor, a conditiona can test either an arithmetic
expression or whether a name is defined as a macro.

A conditional in the C preprocessor resemblesin some waysan i f ' statement in C, but it is important to
understand the difference between them. The conditioninan " i f ' statement is tested during the execution
of your program. Its purpose is to alow your program to behave differently from run to run, deperding on
the data it is operating on. The condition in a preprocessing conditiona directive is tested when your

program is compiled. Its purpose is to allow different code to be included in the program depending on the
situation at the time of compilation.

Uses: What conditionals are for.

Syntax: How conditionals are written.

Deletion: Making code into a comment.

Macros: Why conditionals are used with macros.
Errors: Detecting inconsistent compilation parameters.

Why Conditionals are Used

Generally there are three kinds of reason to use a conditional.

A program may need to use different code depending on the machine or operating system it isto run
on. In some cases the code for one operating system may be erroneous on another operating system;
for example, it might refer to library routines that do not exist on the other system. When this
happens, it is not enough to avoid executing the invalid code: merely having it in the program makes
it impossible to link the program and run it. With a preprocessing conditional, the offending code
can be effectively excised from the program when it is not valid.

Y ou may want to be able to compile the same source file into two different programs. Sometimes the
difference between the programs is that one makes frequent time-consuming consistency checks on
its intermediate data, or prints the values of those data for debugging, while the other does not.

A conditional whose condition is always false is a good way to exclude code from the program but
keep it as a sort of comment for future reference.

Most smple programs that are intended to run on only one machine will not need to use preprocessing
conditionals.

Syntax of Conditionals

A conditional in the C preprocessor begins with a conditional directive: ™ #i f ', #i f def' or
“#i f ndef ' . See section Conditionals and Macros, for information on ™ #i f def ' and ™ #i f ndef ' ; only
“#if' isexplained here.

If: Basic conditionalsusing ™ #i f' and ™ #endi f ' .
Else: Including some text if the condition fails.
Elif: Testing several alternative possibilities.

The #if' Directive

The™ #i f' directiveinits smplest form consists of

#i f expression
controll ed text
#endif /* expression */

The comment following the ™ #endi f' isnot required, but it is a good practice because it helps people
match the " #endi f ' tothe corresponding ™ #i f ' . Such comments should always be used, except in short
conditionals that are not nested. In fact, you can put anything at al after the " #endi f' and it will be
ignored by the GNU C preprocessor, but only comments are acceptable in SO Standard C.

expression is a C expression of integer type, subject to stringent restrictions. It may contain

Integer constants, which are all regarded as| ong or unsi gned 1 ong.

Character constants, which are interpreted according to the character set and conventions of the
machine and operating system on which the preprocessor is running. The GNU C preprocessor uses
the C datatype ™ char ' for these character constants; therefore, whether some character codes are
negative is determined by the C compiler used to compile the preprocessor. If it treats ™ char' as
signed, then character codes large enough to set the sign bit will be considered negative; otherwise,
no character code is considered negative.

Arithmetic operators for addition, subtraction, multiplication, division, bitwise operations, shifts,
comparisons, and logical operations (&&' and " | | '). The latter two obey the usua short-
circuiting rules of standard C.

Identifiers that are not macros, which are all treated as zero(!).

Macro calls. All macro callsin the expression are expanded before actual computation of the
expression's value begins.

Notethat * si zeof ' operators and enumtype values are not alowed. enumtype values, like all other
identifiers that are not taken as macro calls and expanded, are treated as zero.

The controlled text inside of a conditional can include preprocessing directives. Then the directives inside

the conditional are obeyed only if that branch of the conditional succeeds. The text can aso contain other
conditional groups. However, the ™ #i f' and ™ #endi f' directives must balance.

The ™ #el se' Directive

The ™ #el se' directive can be added to a conditional to provide alternative text to be used if the condition
isfase Thisiswhat it looks like:

#i f expression
text-if-true

#el se /* Not expression */
text-if-false

#endif /* Not expression */

If expression is nonzero, and thus the text-if-true is active, then ™ #el se' actslike afailing conditiona and
the text-if-false isignored. Conversely, if the ™ #i f ' conditiona fails, the text-if-false is considered
included.

The #el i f' Directive

One common case of nested conditionalsis used to check for more than two possible aternatives. For
example, you might have

#if X ==

#telse /* X 1=1 */
#if X == 2

#else /[* X 1= 2 */

gendif /* X 1= 2 */
gendif /* X 1= 1 */

Another conditional directive, ~ #el i f' , allowsthisto be abbreviated as follows:

#if X ==1

sel if X == 2

#else /* X 1= 2 and X 1= 1%/

gendif /* X 1= 2 and X |= 1%/

“#el i f' dgandsfor "eseif". Like ™ #el se' ,itgoesinthemiddleof a™ #i f' - #endi f' par and

subdivides it; it does not require amatching " #endi f' of itsown. Like ™ #i f' ,the” #el i f' directive
includes an expression to be tested.

The text following the ™ #el i f' isprocessed only if theoriginal ~ #i f ' -condition failed and the

“#el i f' condition succeeds. Morethanone ™ #el i f' cangointhesame #i f' - #endi f' group.
Then the text after each ~ #el i f' isprocessed only if the ™ #el i f' condition succeeds after the origina
“#if' andany previous #el i f' directiveswithin it have failed. ~ #el se' isequivdentto ™ #el i f
1' ,and " #el se' isalowed after any number of ~ #el i f' directives, but * #el i f' may not follow

" #el se' .

Keeping Deleted Code for Future Reference

If you replace or delete a part of the program but want to keep the old code around as a comment for future
reference, the easy way to do thisistoput “ #i f 0' beforeitand ~ #endi f ' after it. Thisis better than
using comment delimiters™ / *' and ™ */ ' since those won't work if the code aready contains comments
(C comments do not nest).

Thisworks even if the code being turned off contains conditionals, but they must be entire conditionals
(bdlanced ™ #i f' and ™ #endi f').

Conversely, donot use ™ #i f 0" for comments which are not C code. Use the comment delimiters™ / **
and " */' instead. Theinterior of “ #i f 0" must consist of complete tokens; in particular, single-quote

characters must balance. Comments often contain unbalanced single-quote characters (known in English as
apostrophes). These confuse ™ #i f 0' . They do not confuse ™/ ** .

Conditionals and Macros

Conditionals are useful in connection with macros or assertions, because those are the only ways that an
expression's value can vary from one compilation to another. A ~ #i f ' directive whose expression uses no
macros or assertionsisequivalentto " #if 1" or " #i f 0' ; you might aswell determine which one, by
computing the value of the expression yourself, and then smplify the program.

For example, here is a conditional that tests the expression * BUFSI ZE == 1020’ , where” BUFSI ZE'
must be a macro.

#i f BUFSI ZE == 1020
printf ("Large buffers!\n");
#endif /* BUFSIZE is |arge */

(Programmers often wish they could test the size of avariable or datatypein ™ #i f ', but this does not
work. The preprocessor does not understand si zeof , or typedef names, or even the type keywords such as
int.)

The special operator * def i ned' isusedin” #i f' and #el i f' expressionsto test whether a certain
name is defined as a macro. Either * def i ned name or " defi ned (name ' isan expression whose
vaueis1if nameis defined as macro at the current point in the program, and O otherwise. To the
“defined" operator it makes no difference what the definition of the macro is; al that matters is whether
there is a definition. Thus, for example,

#if defined (vax) || defined (ns16000)

would succeed if either of the names ™ vax' and ns16000' isdefined asamacro. You can test the same
condition using assertions (see section Assertions), like this:

#i f #cpu (vax) || #cpu (ns16000)

If amacro is defined and later undefined with ~ #undef ' , subsequent use of the " def i ned' operator
returns O, because the name is no longer defined. If the macro is defined again with another ~ #def i ne' ,
“def i ned" will recommence returning 1.

If the” def i ned' operator appears as aresult of a macro expansion, the C standard says the behavior is
undefined. GNU cpp treats it asagenuine ~ def i ned' operator and evaluates it normaly. It will warn
wherever your code uses this feature if you use the command-lineoption ™ - pedant i ¢' , since other
compilers may handle it differently.

Conditionals that test whether a single macro is defined are very common, so there are two specia short
conditional directives for this case.

#i f def name
isequivdentto " #i f defi ned (name) ' .
#i f ndef nName
isequivdentto " #i f ! defined (name' .

Macro definitions can vary between compilations for several reasons.

Some macros are predefined on each kind of machine. For example, on aVax, thename ™ vax' isa
predefined macro. On other machines, it would not be defined.

Many more macros are defined by system header files. Different systems and machines define
different macros, or give them different values. It is useful to test these macros with conditionals to
avoid using a system feature on a machine where it is not implemented.

Macros are acommon way of alowing users to customize a program for different machines or
applications. For example, the macro * BUFSI ZE' might be defined in a configuration file for your
program that is included as a header file in each source file. You would use " BUFSI ZE' ina
preprocessing conditional in order to generate different code depending on the chosen configuration.
Macros can be defined or undefined with * - D' and ™ - U command options when you compile the
program. Y ou can arrange to compile the same source file into two different programs by choosing a
macro name to specify which program you want, writing conditionals to test whether or how this
macro is defined, and then controlling the state of the macro with compiler command options. See
section Invoking the C Preprocessor.

The #error' and " #war ni ng' Directives

Thedirective ” #er r or ' causes the preprocessor to report afata error. The tokens forming the rest of the

linefollowing ~ #er r or' are used as the error message, and not macro-expanded. Interna whitespace
sequences are each replaced with a single space. The line must consist of complete tokens.

Youwould use " #error' insde of aconditional that detects a combination of parameters which you
know the program does not properly support. For example, if you know that the program will not run
properly on aVax, you might write

#ifdef __vax__
#error "Whn't work on Vaxen. See comments at get_| ast_object."
#endi f

See section Nonstandard Predefined Macros, for why this works.

If you have several configuration parameters that must be set up by the installation in a consistent way, you
can use conditionals to detect an inconsistency and report it with ~ #er r or ' . For example,

#if HASH TABLE SIZE %2 == 0 || HASH TABLE SIZE %3 == 0 \

|| HASH TABLE_SIZE %5 == 0
#error HASH TABLE_SI ZE shoul d not be divisible by a small prine
#endi f

Thedirective " #war ni ng' islikethedirective ™ #error' , but causes the preprocessor to issue awarning
and continue preprocessing. The tokens following ~ #war ni ng' are used as the warning message, and not
macro-expanded.

You might use " #war ni ng' in obsolete header files, with a message directing the user to the header file
which should be used instead.

Assertions

Assertions are amore systematic alternative to macros in writing conditionals to test what sort of computer
or system the compiled program will run on. Assertions are usually predefined, but you can define them
with preprocessing directives or command- line options.

The macros traditionally used to describe the type of target are not classified in any way according to which
guestion they answer; they may indicate a hardware architecture, a particular hardware model, an operating
system, a particular version of an operating system, or specific configuration options. These are jumbled
together in a single namespace. In contrast, each assertion consists of a named question and an answer. The
guestion is usually called the predicate. An assertion looks like this:

#predi cate (answer)

You must use a properly formed identifier for predicate The value of answer can be any sequence of
words, all characters are significant except for leading and trailing whitespace, and differences in internal
whitespace sequences are ignored. (Thisis similar to the rules governing macro redefinition.) Thus, * x +
y' isdifferent from = x+y' but equivalentto™ x + y ' .)" isnotalowed in an answer.

Hereisaconditional to test whether the answer answer is asserted for the predicate predicate:

#i f #predicate (answer)

There may be more than one answer asserted for a given predicate. If you omit the answer, you can test
whether any answer is asserted for predicate:

#i f #predicate

Most of the time, the assertions you test will be predefined assertions. GNU C provides three predefined
predicates: syst em cpu, and machi ne. syst emis for assertions about the type of software, cpu describes the
type of computer architecture, and machi ne gives more information about the computer. For example, on a
GNU system, the following assertions would be true:

#system (gnu)

#system (mach)

#system (mach 3)

#system (mach 3. subversi on)
#system (hurd)

#system (hurd version)

and perhaps others. The aternatives with more or less version information let you ask more or less detailed
guestions about the type of system software.

On a Unix system, you would find #syst em (uni x) and perhaps one of: #syst em (ai x) , #syst em (bsd),
#system (hpux), #system (| ynx), #system (nmach) , #system (posi x) , #system (svr 3), #system
(svr4),or#system (xpg4) with possible version numbers following.

Other vaues for syst emare#syst em (nvs) and #system (vns) .

Portability note: Many Unix C compilers provide only one answer for the syst emassertion: #syst em
(uni x) , If they support assertions at al. Thisis less than useful.

An assertion with a multi-word answer is completely different from several assertions with individual
single-word answers. For example, the presence of syst em (mach 3. 0) does not mean that syst em (3. 0)
istrue. It also does not directly imply syst em (mach), but in GNU C, that last will normally be asserted as
well.

The current list of possible assertion values for cpu is. #cpu (a29k), #cpu (al pha), #cpu (arnj, #cpu
(clipper),#cpu (convex), #cpu (el xsi), #cpu (tron), #cpu (h8300), #cpu (i 370), #cpu (i 386),
#cpu (i 860),#cpu (i960), #cpu (nm68k), #cpu (nB8k), #cpu (m ps), #cpu (ns32k), #cpu (hppa),
#cpu (pyr), #cpu (i bnD32), #cpu (rs6000), #cpu (sh),#cpu (sparc),#cpu (spur),#cpu (tahoe),
#cpu (vax), #cpu (we32000).

Y ou can create assertions within a C program using ~ #assert ' | likethis:
#assert predicate (answer)
(Notethe absence of a™ #' before predicate)

Each time you do this, you assert a new true answer for predicate Asserting one answer does not invalidate
previoudly asserted answers; they al remain true. The only way to remove an answer is with

“#unassert' . #unassert' hasthesamesyntax as” #assert' . You can aso remove al answersto
apredicatelikethis:

#unassert predicate

Y ou can also add or cancel assertions using command options when you run gcc or cpp. See section
Invoking the C Preprocessor.

Combining Sour ce Files

One of the jobs of the C preprocessor is to inform the C compiler of where each line of C code came from:
which source file and which line number.

C code can come from multiple source files if you use ™ #i ncl ude' ;both ™ #i ncl ude' and the use of
conditionals and macros can cause the line number of aline in the preprocessor output to be different from
the line's number in the original source file. You will appreciate the value of making both the C compiler (in
error messages) and symbolic debuggers such as GDB use the line numbers in your source file.

The C preprocessor builds on this feature by offering a directive by which you can control the feature
explicitly. Thisis useful when afile for input to the C preprocessor is the output from another program such
asthe bi son parser generator, which operates on another file that is the true source file. Parts of the output
from bi son are generated from scratch, other parts come from a standard parser file. The rest are copied
nearly verbatim from the source file, but their line numbers in the bi son output are not the same as their
origina line numbers. Naturally you would like compiler error messages ard symbolic debuggers to know
the origina source file and line number of each line in the bi son input.

bi son arranges this by writing * #1 i ne' directivesinto the output file. * #1 i ne' isadirective that
specifies the original line number and source file name for subsequent input in the current preprocessor
input file. ~ #1 i ne' hasthree variants:

#l i ne linenum
Here linenum is a decimal integer constant. This specifies that the line number of the following line
of input, inits origina source file, was linenum.

#l i ne linenum filename
Here linenum is a decimal integer constant and filename s a string constant. This specifies that the
following line of input came originally from source file filename and its line number there was
linenum. Keep in mind that filenameis not just a file name; it is surrounded by double-quote
characters so that it looks like a string constant.

#l i ne anything else
anything else is checked for macro calls, which are expanded. The result should be a decimal integer
constant followed optionally by a string constant, as described above.

“#line' directivesdtertheresultsof the™ FILE ' and”™ LI NE_ ' predefined macros from that
point on. See section Standard Predefined Macros

The output of the preprocessor (which is the input for the rest of the compiler) contains directives that look
much like ™ #I i ne' directives. They start with just * #' instead of ~ #l i ne' , but thisis followed by aline
number and filename asin ~ #l i ne' . See section C Preprocessor Output.

M iscellaneous Pr eprocessing Dir ectives

This section describes some additional, rarely used, preprocessing directives.

The 1SO standard specifies that the effect of the ™ #pr agma' directive is implementation-defined. The
GNU C preprocessor recognizes some pragmas, and passes unrecognized ones through to the preprocessor
output, so they are available to the compilation pass.

In line with the C99 standard, which introduces a STDC namespace for C99 pragmas, the preprocessor
introduces a GCC namespace for GCC pragmas. Supported GCC preprocessor pragmas are of the form
“#pragma GCC .. .' . For backwards compatibility previously supported pragmas are also recognized
without the ™ GCC' prefix, however that use is deprecated. Pragmas that are already deprecated are not
recognized witha™ GCC' prefix.

The™ #pragma GCC dependency' alowsyou to check the relative dates of the current file and
another file. If the other file is more recent than the current file, awarning is issued. Thisis useful if the
include file is derived from the other file, and should be regenerated. The other file is searched for using the
normal include search path. Optional trailing text can be used to give more information in the warning

message.

#pragma GCC dependency "parse.y"
#pragma GCC dependency "/usr/include/time.h" rerun /path/to/fixincludes

The C99 standard also introducesthe ™ _Pragma' operator. The syntax is_Pragma (string-literal),
where string-literal' canbeether anormal or wide-character string literal. It is destringized, by
replacingal "\ \' withasingle \' anddl "\ "' witha "' . Theresultisthen processed asif it had
appeared as theright hand side of a™ #pr agna' directive. For example,

_Pragma (" GCC dependency \"parse.y\"")

has the same effect as ™ #pr agnma GCC dependency "parse.y"' . The same effect could be
achieved using macros, for example

#defi ne DO_PRAGVA(X) _Pragma (#x)
DO _PRAGVA (GCC dependency "parse.y")

The standard is unclear onwherea™ Pr agnma' operator can appear. The preprocessor accepts it even
within a preprocessing conditional directive like ™ #i f ' . To be safe, you are probably best keeping it out of
directives other than ™ #def i ne' , and putting it on aline of its own.

The #i dent ' directive is supported for compatibility with certain other systems. It is followed by aline
of text. On some systems, the text is copied into a special place in the object file; on most systems, the text
isignored and this directive has no effect. Typically ~ #i dent ' isonly used in header files supplied with
those systems where it is meaningful.

The null directive consistsof a™ #' followed by a newline, with only whitespace (including comments) in
between. A null directive is understood as a preprocessing directive but has no effect on the preprocessor
output. The primary significance of the existence of the null directive is that an input line consisting of just a
" #' will produce no output, rather than aline of output containing just a”™ #' . Supposedly some old C
programs contain such lines.

C Preprocessor Output

The output from the C preprocessor looks much like the input, except that all preprocessing directive lines
have been replaced with blank lines and all comments with spaces.

The 1SO standard specifies that it is implementation defined whether a preprocessor preserves whitespace
between tokens, or replaces it with e.g. asingle space. In the GNU C preprocessor, whitespace between
tokens is collapsed to become a single space, with the exception that the first token on a non-directive lineis
preceded with sufficient spaces that it appears in the same column in the preprocessed output that it
appeared in in the origina source file. Thisis so the output is easy to read. See section Undefined Behavior
and Deprecated Features.

Source file name and line number information is conveyed by lines of the form

linenum fil ename fl ags

which are inserted as needed into the output (but never within a string or character constant), and in place of
long sequences of empty lines. Such a line means that the following line originated in file filename @ line
[inenum.

After the file name comes zero or more flags, whichare ™ 1' , " 2", 3" ,or ~ 4' . If there are multiple flags,
spaces separate them. Here is what the flags mean:

0
This indicates the start of a new file.

<o
This indicates returning to afile (after having included another file).

<3
This indicates that the following text comes from a system header file, so certain warnings should be
suppressed.

e

This indicates that the following text should be treated as C.

| mplementation-defined Behavior and | mplementation Limits

The 1SO C standard mandates that implementations document various aspects of preprocessor behavior.
Y ou should try to avoid undue reliance on behaviour described here, asit is possible that it will change
subtly in future implementations.

The mapping of physical source file multi-byte characters to the execution character set. Currently,
GNU cpp only supports character sets that are strict supersets of ASCII, and performs no translation
of characters.

Non-empty sequences of whitespace characters. Each whitespace sequence is not preserved, but
collapsed to a single space. For aesthetic reasons, the first token on each non-directive line of output
is preceded with sufficient spaces that it appears in the same column as it did in the original source
file.

The numeric value of character constants in preprocessor expressions. The preprocessor interprets
character constarts in preprocessing directives on the host machine. Expressions outside

preprocessing directives are compiled to be interpreted on the target machine. In the normal case of a
native compiler, these two environments are the same and so character constants will be evaluated
identically in both cases. However, in the case of a cross compiler, the values may be different.
Multi-character character constants are interpreted a character at atime, shifting the previous result
left by the number of bits per character on the host, and adding the new character. For example, 'ab’
on an 8-bit host would be interpreted as'a * 256 + 'b'. If there are more characters in the constant
than can fit in the widest native integer type on the host, usualy a” | ong' , the behavior is
undefined. Evaluation of wide character constants is not properly implemented yet.

Source file inclusion. For a discussion on how the preprocessor locates header files, see section How
" #i ncl ude' Works.

Interpretation of the filename resulting from a macro-expanded ~ #i ncl ude' directive. If the
macro expands to a string literal, the ™ #i ncl ude' directiveis processed as if the string had been
specified directly. Otherwise, the macro must expand to atoken stream beginning witha ™ <' token
and includinga™ >' token. In this case, the tokens between the * <' and thefirst * >' are combined
to form the filename to be included. Any whitespace between tokens is reduced to a single space;
then any space after theinitial ~ <' isretained, but atrailing space before the closing ™ >' isignored.
In either case, if any excess tokens remain, an error occurs and the directive is not processed.
Treatment of a” #pr agnma' directive that after macro-expansion results in a standard pragma. The
pragmais processed asif it were a normal standard pragma.

The following documents internal limits of GNU cpp.

Nesting levelsof ™ #i ncl ude' files. We impose an arbitrary limit of 200 levels, to avoid runaway
recursion. The standard requires at least 15 levels.

Nesting levels of conditional inclusion. The C standard mandates this be at least 63. The GNU C
preprocessor is limited only by available memory.

Levels of parenthesised expressions within afull expression. The C standard requires this to be at
least 63. In preprocessor conditional expressionsit is limited only by available memory.

Significant initial charactersin an identifier or macro name. The preprocessor treats al characters as
significant. The C standard requires only that the first 63 be significant.

Number of macros simultaneously defined in a single trandation unit. The standard requires at least
4095 be possible; GNU cpp is limited only by available memory.

Number of parameters in a macro definition and arguments in a macro call. We allow
USHRT_MAX, which is normally 65,535, and above the minimum of 127 required by the standard.
Number of characters on alogical source line. The C standard requires a minimum of 4096 be
permitted. GNU cpp places no limits on this, but you may get incorrect column numbers reported in
diagnostics for lines longer than 65,535 characters.

Undefined Behavior and Depr ecated Features

This section details GNU C preprocessor behavior that is subject to change or deprecated. Y ou are strongly
advised to write your software so it does not rely on anything described here; future versions of the
preprocessor may subtly change such behavior or even remove the feature altogether.

Preservation of the form of whitespace between tokens is unlikely to change from current behavior (section
C Preprocessor Output), but you are advised not to rely on it.

The following are undocumented and subject to change-

Precedence of ## operators with respect to each other Whether a sequence of ## operatorsis
evaluated |eft-to-right, right-to- left or indeed in a consistent direction at al is not specified. An
example of where this might matter is pasting the arguments ™ 1' , " e' and " - 2' . Thiswould be
fine for left-to-right pasting, but right-to-left pasting would produce an invalid token ™ e- 2" . Itis
possible to guarantee precedence by suitable use of nested macros.

Precedence of # operator with respect to the ## operator Which of these two operatorsis evaluated
first is not specified.

The following features are in flux and should not be used in portable code:

Optional argument when invoking rest argument macros As an extension, GCC permits you to omit
the variable arguments entirely when you use a variable argument macro. This works whether or not
you give the variable argument a name. For example, the two macro invocations in the example
below expand to the same thing:

#define debug(format, ...) printf (format, _ VA ARGS)
debug("string"); /* Not permitted by C standard. */
debug("string",); [* oK */

This extension will be preserved, but the special behavior of ~ ##' in this context has changed in the
past and may change again in the future.

swallowing preceding text in rest argument macros Formerly, in a macro expansion, if =~ ##'
appeared before a variable arguments parameter, and the set of tokens specified for that argument in
the macro invocation was empty, previous versions of the GNU C preprocessor would back up and
remove the preceding sequence of non-whitespace characters (not the preceding token). This
extension isin direct conflict with the 1999 C standard and has been drastically pared back. In the
current version of the preprocessor, if ~ ##' appears between a comma and a variable arguments
parameter, and the variable argument is omitted entirely, the commawill be removed from the
expansion. If the variable argument is empty, or the token before ™ ##' isnot acomma, then ™ ##'
behaves as a normal token paste. Portable code should avoid this extension at all costs.

The following features are deprecated and will likely be removed at some point in the future-

Attempting to paste two tokens which together do not form avalid preprocessing token The
preprocessor currently warns about this and outputs the two tokens adjacently, which is probably the
behavior the programmer intends. It may not work in future, though. Most of the time, when you get
this warning, you will find that ~ ##' is being used superstitiously, to guard against whitespace
appearing between two tokens. It is almost aways safe to delete the ™ ##' .

#pragma once This pragma was once used to tell the preprocessor that it need not include a file more
than once. It is now obsolete and should not be used at all.

#pragma poison This pragma has been superseded by ~ #pr agnma GCC poi son' . See section
Poisoning Macros.

Multi-line string literals in directives The GNU C preprocessor currently alows newlines in string
literals within a directive. Thisis forbidden by the C standard and will eventually be removed.
(Multi-line string literals in open text are still supported.)

Preprocessing things which are not C The C preprocessor is intended to be used only with C, C++,
and Objective C source code. In the past, it has been abused as a general text processor. It will choke
on input which is not lexically valid C; for example, apostrophes will be interpreted as the beginning
of character constants, and cause errors. Also, you cannot rely on it preserving characteristics of the
input which are not significant to C-family languages. For instance, if a Makefile is preprocessed, all
the hard tabs will be lost, and the Makefile will not work. Having said that, you can often get away
with using cpp on things which are not C. Other Algol-ish programming languages are often safe
(Pascal, Ada, ...) and so is assembly, with caution. ™ -t radi t i onal * mode is much more
permissive, and can safely be used with e.g. Fortran. Many of the problems go away if you write C
or C++ style comments instead of native language comments, and if you avoid elaborate macros.
Wherever possible, you should use a preprocessor geared to the language you are writing in. Modern
versions of the GNU assembler have macro facilities. Most high level programming languages have
their own conditional compilation and inclusion mechanism. If all else fails, try atrue general text
processor, such as See section "Top' in GNU "'mé4'.

| nvoking the C Pr epr ocessor

Most often when you use the C preprocessor you will not have to invoke it explicitly: the C compiler will do
so automatically. However, the preprocessor is sometimes useful on its own.

The C preprocessor expects two file names as arguments, infile and outfile. The preprocessor reads infile
together with any other files it specifieswith = #i ncl ude' . All the output generated by the combined
input files is written in outfile.

Either infile or outfilemay be ™ - ' , which as infile means to read from standard input and as outfile means
to write to standard output. Also, if either file is omitted, it means the same asif * - ' had been specified for
that file.

Hereis atable of command options accepted by the C preprocessor. These options can also be given when
compiling a C program; they are passed along automatically to the preprocessor when it isinvoked by the
compiler.

-P
Inhibit generation of ~ #' -lines with line-number information in the output from the preprocessor.
This might be useful when running the preprocessor on something that is not C code and will be sent

to a program which might be confused by the ™ #' -lines. See section C Preprocessor Output.

Do not discard comments. All comments are passed through to the output file, except for comments
in processed directives, which are deleted along with the directive. Comments appearing in the
expansion list of amacro will be preserved, and appear in place wherever the macro isinvoked. You

should be prepared for side effectswhen using ™ - C' ; it causes the preprocessor to treat comments
as tokens in their own right. For example, macro redefinitions that were trivial when comments were
replaced by a single space might become significant when comments are retained. Also, comments
appearing at the start of what would be a directive line have the effect of turning that line into an
ordinary source line, since the firg token on the lineisno longer a™ #' .

“-traditional'

Tetri

Try to imitate the behavior of old-fashioned C, as opposed to SO C.

Traditional macro expansion pays no attention to single-quote or double-quote characters;
macro argument symbols are replaced by the argument values even when they appear within
apparent string or character constants.

Traditionaly, it is permissible for a macro expansion to end in the middle of a string or
character constant. The constant continues into the text surrounding the macro call.
However, traditionally the end of the line terminates a string or character constant, with no
error.

In traditional C, acomment is equivalent to no text at al. (In ISO C, acomment counts as
whitespace.)

Traditional C does not have the concept of a"preprocessing number”. It considers

"1. 0e+4' tobethreetokens: " 1. Oe' , " +' ,and " 4' .

A macro is not suppressed within its own definition, in traditional C. Thus, any macro that is
used recursively inevitably causes an error.

The character * #' has no special meaning within a macro definition in traditional C.

In traditional C, the text at the end of a macro expansion can run together with the text after
the macro call, to produce a single token. (Thisisimpossiblein 1ISO C.)

None of the GNU extensions to the preprocessor are availablein " -t radi ti onal * mode.

Usethe -traditional' optionwhen preprocessing Fortran code, so that single-quotes and
double-quotes within Fortran comment lines (which are generally not recognized as such by the
preprocessor) do not cause diagnostics about unterminated character or string constants. However,
this option does not prevent diagnostics about unterminated comments when a C-style comment
appears to start, but not end, within Fortran style commentary. So, the following Fortran comment
linesare accepted with * -t radi ti onal ' :

C This isn't an unterm nated character constant

C Neither is "20000000000, an octal constant
Cin some dialects of Fortran

However, this type of comment line will likely produce a diagnostic, or at least unexpected output

from the preprocessor, due to the unterminated comment:
C Sonme Fortran compilers accept /* as starting
C an inline comment.

Note that g77 automatically suppliesthe ™ -t r adi ti onal ' option when it invokes the
preprocessor. However, afuture version of g77 might use a different, more-Fortran-aware
preprocessor in place of cpp.

gr aphs’

Process | SO standard trigraph sequences. These are three-character sequences, all starting with

" ??" , that are defined by SO C to stard for single characters. For example, * ??/ ' sandsfor "\ ',
so ' ??/ n'"' isacharacter constant for a newline. By default, GCC ignores trigraphs, but in

standard-conforming modes it converts them. Seethe " - st d' option. The nine trigraph sequences
are
"2
> [!
T?7?)"
>] '
<
>0 { !
TR
> } !
T 27
> CH#
2?0
> \ '
Coor
A
Rad
> | !
TR
>0~
Trigraph support is not popular, so many compilers do not implement it properly. Portable code
should not rely on trigraphs being either converted or ignored.
" -pedantic’
Issue warnings required by the ISO C standard in certain cases such as when text other than a
comment follows ™ #el se' or " #endi f' .
"-pedantic-errors'
Like™ - pedanti c' , except that errors are produced rather than warnings.
" -Wonmment '
" -Woment s’
(Both forms have the same effect). Warn whenever a comment-start sequence " / *' appearsin a
"/ *' comment, or whenever a backslash-newline appearsina / /' comment.
“-Wrigraphs'
Warn if any trigraphs are encountered. This option used to take effect only if “ -t ri graphs' was
also specified, but now works independently. Warnings are not given for trigraphs within comments,
as we feedl thisis obnoxious.
" - Whhi t e- space’
Warn about possible white space confusion, e.g. white space between a backslash and a newline.
-l
Requests ™ - Womment ', -Wri graphs' ,and ™ - Whwhi t e- space' (butnot " -
Wraditional' or -Wndef").
"-Wraditional'
Warn about certain constructs that behave differently in traditional and SO C.
" - Windef '
Warn if an undefined identifier is evaluated inan ™ #i f ' directive.
" -1 directory

Add the directory directory to the head of the list of directories to be searched for header files (see
section The ™ #i ncl ude' Directive). This can be used to override a system header file, substituting
your own version, since these directories are searched before the system header file directories. If
you use morethanone ™ - | ' option, the directories are scanned in |eft-to-right order; the standard
system directories come after.

S
Any directories specified with ™ - | * optionsbeforethe ™ - | - ' optionare searched only for the case
of “ #i ncl ude "file"" ; they are not searched for ~ #i ncl ude <file>' . If additiona directories
are specifiedwith ™ - | ' options after the ™ - | - ', these directories are searched for all
" #i ncl ude' directives. In addition, the ™ - | - ' option inhibits the use of the current directory as
the first search directory for ~ #i ncl ude " file""' . Therefore, the current directory is searched only
if it is requested explicitly with * - | . * . Specifyingboth * -1 -' and ™ -1." dlowsyou to control
precisely which directories are searched before the current one and which are searched after.

“-nostdinc'
Do not search the standard system directories for header files. Only the directories you have
specifiedwith * - 1 * options (and the current directory, if appropriate) are searched.

“-nostdi nc++'
Do not search for header files in the C++-specific standard directories, but do still search the other
standard directories. (This option is used when building the C++ library.)

-remap’

When searching for a header file in a directory, remap file names if afile named * header . gcc'
existsin that directory. This can be used to work around limitations of file systems with file name
restrictions. The * header . gcc' file should contain a series of lines with two tokens on each line: the
first token is the name to map, and the second token is the actual name to use.

" - D name
Predefine name as a macro, with definition ™ 1" .

" - D name=definition’
Predefine name as a macro, with definition definition. There are no restrictions on the contents of
definition, but if you are invoking the preprocessor from a shell or shell-like program you may need
to use the shell's quoting syntax to protect characters such as spaces that have a meaning in the shell
syntax. If you use morethanone ™ - D' for the same name, the rightmost definition takes effect.

" - U namé
Do not predefine name. If both ™ - U and ™ - D' are specified for one name, whichever one appears
later on the command line wins.

" -undef’
Do not predefine any nonstandard macros.

- gcc'

Definethemacros__ GNUC_, GNUC_MINOR__and __ GNUC_PATCHLEVEL _ . These are
defined automatically when you use " gcc - E' ; you can turn them off in that case with * - no-
gcc' .

" - A predicate=answer'
Make an assertion with the predicate predicate and answer answer. This form is preferred to the
older form ~ - A predicatg(answer) ' , which is still supported, because it does not use shell special
characters. See section Assertions.

" - A - predicate=answer’

Disable an assertion with the predicate predicate and answer answer. Specifying no predicate, by = -

A-' or - A -' disablesal predefined assertions and all assertions preceding it on the command

line; and also undefines al predefined macros and all macros preceding it on the command line.
T-dM

Instead of outputting the result of preprocessing, output alist of ~ #def i ne' directivesfor al the

macros defined during the execution of the preprocessor, including predefined macros. This gives

you away of finding out what is predefined in your version of the preprocessor; assuming you have

nofile” f oo. h' , the command
touch foo.h; cpp -dMfoo.h

will show the values of any predefined macros.

" -dD
Like™ - dM except in two respects: it does not include the predefined macros, and it outputs both
the ™ #def i ne' directives and the result of preprocessing. Both kinds of output go to the standard
output file.

" -dN
Like™ - dD' , but emit only the macro names, not their expansions.

T-dl!
Output * #i ncl ude' directivesin addition to the result of preprocessing.

-M-M3!
Instead of outputting the result of preprocessing, output arule suitable for make describing the
dependencies of the main source file. The preprocessor outputs one make rule containing the object
file name for that source file, a colon, and the names of al the included files. If there are many
included files then the rule is split into severa linesusing ™\ ' -newline.” - MG saysto treat missing
header files as generated files and assume they live in the same directory as the source file. It must
be specified in additionto " - M . Thisfeature is used in automatic updating of makefiles.

-MM[-MT
Like” - M but mention only the filesincluded with * #i ncl ude "file"' . System header files
included with ~ #i ncl ude <file>' are omitted.

" - MD file
Like™ - M but the dependency information is written to file. Thisisin addition to compiling the file
as specified -- * - MD' does not inhibit ordinary compilation theway ~ - M does. When invoking
gcc, do not specify the file argument. gcc will create file names made by replacing ".c" with ".d" at
the end of the input file names. In Mach, you can use the utility md to merge multiple dependency
files into a single dependency file suitable for using with the * make' command.

" - MVD file
Like™ - MD' except mention only user header files, not system header files.

C-H
Print the name of each header file used, in addition to other normal activities.

“-imacros file
Process file as input, discarding the resulting output, before processing the regular input file.
Because the output generated from fileis discarded, the only effect of ~ - i macr os file' isto make
the macros defined in file available for use in the main input.

" -include file

Process file as input, and include all the resulting output, before processing the regular input file.
“-idirafter dir

Add the directory dir to the second include path. The directories on the second include path are
searched when a header file is not found in any of the directories in the main include path (the one

that ™ - | ' addsto).

“-iprefix prefix'

Specify prefix as the prefix for subsequent ™ - i wi t hpr ef i x' options. If the prefix represents a
directory, you should include the final ~ / * .

“-iw thprefix dir

Add a directory to the second include path. The directory's name is made by concatenating prefix
and dir, where prefix was specified previously with - i prefi x' .

" -isystem dir'

Add adirectory to the beginning of the second include path, marking it as a system directory, so that
it gets the same special treatment asis applied to the standard system directories. See section System
Headers.

c++'
obj ective-c'
assenbl er-w t h-cpp’

Specify the source language: C, C++, Objective-C, or assembly. This has nothing to do with
standards conformance or extensions; it merely selects which base syntax to expect. If you give none
of these options, cpp will deduce the language from the extension of the sourcefile: * . c¢', . cc',
“.m ,or .S .Some other common extensions for C++ and assembly are aso recognized. If cpp
does not recognize the extension, it will treat the file as C; thisis the most generic mode. Note:
Previous versions of cpp accepteda™ - | ang' option which selected both the language and the
standards conformance level. This option has been removed, because it conflicts withthe ™ - |
option.

- st d=standard'
‘-ansi'

Specify the standard to which the code should conform. Currently cpp only knows about the
standards for C; other language standards will be added in the future. standard may be one of:

i s09899: 1990

c89

The ISO C standard from 1990. * ¢89" isthe customary shorthand for this version of the standard.
The - ansi' optionisequivalentto - st d=c89' .

i S09899: 199409

The 1990 C standard, as amended in 1994.

i s09899: 1999

c99

i $09899: 199x

c9x

Therevised 1SO C standard, published in December 1999. Before publication, this was known as
CoX.

gnu89

The 1990 C standard plus GNU extensions. Thisis the default.

gnu99

gnu9x

The 1999 C standard plus GNU extensions.

" -ftabst op=NUVMBER

Set the distance between tab stops. This helps the preprocessor report correct column numbersin
warnings or errors, even if tabs appear on the line. Vaues less than 1 or greater than 100 are ignored.
The default is 8.

Forbidtheuseof ~ $' inidentifiers. The C standard allows implementations to define extra

characters that can appear in identifiers. By default the GNU C preprocessor permits ™ $' , a
common extension

Concept | ndex

#

- H#

- arguments in macro definitions
- ASCII NUL handling

- assertions

- assartions, undoing

- cascaded macros

- commenting out code

- computed ~ #i ncl ude
- concatenation

- conditionals

- deprecated features
- directives

- empty macro arguments
- expansion of arguments

- Fortran

- function-like macro

- header file

implementation limits
implementation-defined behavior
including just once

- inheritance

invocation of the preprocessor

- line control

macro argument expansion
macro body uses macro

macro with variable arguments
macros with argument
manifest constant

newlines in macro arguments
- null directive

- object-like macro

- options

- output format
- overiding a header file

- parentheses in macro bodies
- pitfalls of macros

+ poisoning Macros

- predefined macros

- predicates

- preprocessing directives

- prescan of macro arguments
- problems with macros

- redefining macros

- repeated inclusion

- rest argument (in macro)
- retracting assertions

- second include path

- sdf-reference

- semicolons (after macro calls)

- side effects (in macro arguments)

- standard predefined macros

- gtringification

- system header files, system header files

- testing predicates

. unassert
- undefined behavior

- undefining macros
- unsafe macros

- unterminated

- variable number of arguments

| ndex of Directives, M acros and Options

#

- Hassart

- #cpu

- #define

- #elif

- Helse

- Herror

+ Hident

il

- #ifdef

- #ifndef

- #import

- #include

- #include next

- #line

- #machine

. #oragma

- #pragma GCC

- #pragma GCC dependency
- #pragma GCC poison
- #pragma GCC system header
- #pragmaonce

. Hsystem

- Hunassert

- #warning

> len

ans

. :di rafter
- -imacros
.+ -include

- -iprefix
- -isystem, -isystem

- -iwithprefix

. -M

- -MD

- -MM

- -MMD

- -nostdinc

- -nostdinc++
- P

- -pedantic

- -pedantic-errors

- -remap
- (0

. _traditional
- -trigraphs

. -U

- -undef

- -Wall

- -Wcomment
- -Witraditional
- -Witrigraphs
- -Wundef

- -Wwhite-space
- -x assembl er-with-cpp

- -XC

- -x objective-c

BASE FILE

. CHAR UNSIGNED

. cplusplus

. DATE

. FILE

- __GNUC

GNUC MINOR
GNUC PATCHLEVEL

- __ GNUG
INCLUDE LEVEL
- __LINE
OPTIMIZE
- __ REGISTER PREFIX
- __SIDC
STDC VERSION
- _ STRICT ANSI
- __ TIME
USER LABEL PREFIX

- __VERSION
- _AM29000
- _AM29K

- _Pragma

- BSD

- defined

- M68020
- mB8Kk
- mc68000

- nNs32000

- unix

