(a) A typical PCB substrate consists of Al₂O₃ with a relative dielectric constant of 10 and a loss tangent of 0.0004 at 10 GHz. Find the conductivity of substrate.

5

5

8

(b) Starting with basic definition for the Standing Wave Ratio (SWR) :-

$$SWR = \frac{|V_{max}|}{|V_{min}|} = \frac{|I_{max}|}{|I_{min}|}$$

Show that it can be re-expressed as,

$$SWR = \frac{1 + \left| \Gamma_0 \right|}{1 - \left| \Gamma_0 \right|} .$$

- (c) For GaAs we find at T = 300 °K the effective densities of state $N_C = 4.7 \times 10^{17}$ cm⁻³, $N_V = 7.0 \times 10^{18}$ cm⁻³. Assuming that the band gap energy of 1.42 eV remains constant,
 - (i) Find the intrinsic carrier concentration at room temperature.
 - (ii) Compute n, at T = 400 °K.
- (d) Explain simplified Ebers-Moll model for forward active mode of transistor.
- (a) A 100 Ω microstrip line is connected to a 75 Ω line. Determine Γ, SWR, percentage 10 power reflected, return loss, percentage power transmitted and insertion loss.
 - (b) Derive expressions for internal, external and loaded quality factors for the standard 10 series and parallel resonance circuit.
- 3. (a) An abrupt pn-junction made of S has the acceptor and donor concentrations of $N_A = 10^{18} \, \text{cm}^{-3}$ and $N_D = 5 \times 10^{15} \, \text{cm}^{-3}$, respectively. Assuming that the device is at room temperature. Determine
 - (i) barrier voltage:
 - (ii) the space charge width in the p and n type semiconductors.
 - (b) An unknown load impedance is connected to a 0·3 λ long, 50 Ω lossless 10 transmission line. The SWR and phase of the reflection coefficient measured at the input of line are 2·0 and -20°, respectively. Using the Smit chart, determine the input and load impedances.
- 4. (a) An N = 3 Chebyshev bandpass filter is to be designed with a 3 dB passband 12 ripple for a communication link. The centre frequency is at 2-4 GHz and the filter has it meet a bandwidth requirement of 20 %. The filter has to be inserted into a 50 Ω characteristic line impedance. Find inductive and capacitive elements. Show the attenuation response from 1 to 4 GHz.
 - (b) Explain Schottky diode with cross sectional view and circuit model.

- (a) Obtain the h-parameter representation for a BJT in common base configuration, 10 neglecting base, emitter and collector resistances (r_B, r_E and r_C).
 - (b) Explain construction and functionality of High Electron Mobility Transistor.

(a) Prove the first three Kuroda's identities by computing the appropriate ABCD 10
matrices.

- (b) A radio transmitter is capable of producing 3 W output power. The transmitter is connected to an antenna having characteristic impedance of 75 Ω . The connection is made using lossless co-axial cable with a 50 Ω characteristic impedance. Calculate the power delivered to antenna if the source impedance is 45 Ω and cable length is 11 λ .
- Write short notes on :—
 - (a) RF behaviour of resistor
 - (b) Micro strip Transmission Lines
 - (c) Butterworth filter
 - (d) Measurements of AC parameters of BJT.

Table Chebyshev filter cefficients; 3 dB filter design (N = 1 to 10)

N	81	82	83	84	85	86	87	88	89	g 10	811
1	1.9953	1.0000						1.			
2	3.1013	0.5339	5.8095	D			i.				
3	3.3487	0.7117	3.3487	1.0000			1	\$ · · · ·			-62
4	3.4389	0.7483	4.3471	0.5920	5.8095	J	79-				
5	3.4817	0.7518	4.5381	0.7618	3.4817	1.0000		1.			
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095				
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000			
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4:4990	0.6073	5.8095		
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118.	4.6692	0.7760	3.5340	1.0000	
10	3.5384	0.7771	4.6768	0.8136	4:7425	0.8164	4.7260	0.8051	4.5142	0.6091	\$2X

5 5 5

10

10