
SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act,1956)
Course \& Branch :B.E/B.Tech - CSE/IT
Title of the Paper :Digital Computer Fundamentals Max. Marks :80
Sub. Code :412305-511305-512305-6C0044
Date :07/11/2009

Time: 3 Hours
Session :FN
PART - A
$(10 \times 2=20)$

Answer ALL the Questions

1. Convert (325) ${ }_{10}$ in to binary.
2. What is a Gray code?
3. Write Demorgan's theorem?
4. What is don't care condition?
5. Give Half-Subtractor circuit.
6. Compare Multiplexer and Demultiplexer.
7. What is T-Flip-flop?
8. What is Ripple Counter?
9. Differentiate ROM and RAM Memories.
10. Give storage hierarchy.

Answer All the Questions

11. Given the two binary numbers $\mathrm{X}=1010100$ and $\mathrm{Y}=1000011$, perform the Subtraction
(a) X - Y and
(b) Y-X Using 1's and 2's Complements. (or)
12. Discuss Error detection, Reflection, Alphanumeric and Selfcomplementary codes.
13. (a) Express the Boolean function $\mathrm{F}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$ in a sum of Minterms.
(b) Express the Boolean function $\mathrm{F}=\mathrm{xy}+\mathrm{x}$ ' z in a product of Maxterms.

(or)

14. Simplify the following Boolean function by using the tabulation method.

$$
F=\Sigma(0,1,2,8,10,11,14,15)
$$

15. (a) Implement a full subtractor with two half-adders and an OR gate?
(b) Explain 4-bit adder subtractor.
(or)
16. Design BCD-to- Excess-3 code converter.
17. A sequential circuit has two flip flops (A and B), two inputs (X and Y), and an output (z). The flip-flop input functions and the circuit output functions are as follows
$J A=x B+y^{\prime} B^{\prime} \quad K A=x y^{\prime} B^{\prime}$
$\mathrm{JB}=\mathrm{x} \mathrm{A}^{\prime}$
$K B=x y^{\prime}+A$
$Z=x y A+x^{\prime} y^{\prime} B$
(or)
18. Design a BCD Counter with JK flipflops.
19. Discuss Virtual Memory in detail. (or)
20. (a) Explain Static and Dynamic ROM Memories.
(b) Discuss Random Access Memory
