I.E.S-(OBJ) 2002

1 of 15

ELECTRONICS & TELECOMMUNICATION ENGINEERING

PAPER-II

2.

1. Match List I (Pole-zero plot of linear control system) with list II (Responses of the system) and select the correct answer: List I

c.	3	4	2	1
d.	3	4	1	2

$$G(z).H(z) = \frac{10}{s^2 (1+0.5s).(1+s)}$$

- a. will start ($\omega = \infty$) in the first quadrant arid will terminate ($\omega = 0$) in the second quadrant
- b. will start $(\omega = \infty)$ in the fourth quadrant and will terminate $(\omega = 0)$ in the second quadrant.
- c. will start ($\omega = \infty$) in the second quadrant and will terminate ($\omega = 0$) in the third quadrant
- d. will start ($\omega = \infty$) in the first quadrant and will terminate ($\omega = 0$) in the fourth quadrant
- 3. The feedback amplifier shown in the figure below

- a. is stable for all values of R and C
- b. is stable only for $R_1R_2 = R_3$
- c. is stable only for $R_1C = R_1R_3$
- d. is stable if $R_1 / R_2 = C / R_3$

Consider the following statements : Nichol's chart gives information about

- 1. closed loop frequency response
- 2. the value of the peak magnitude of the closed loop frequency response M_P
- 3. the frequency at which M_P occurs Which of the above statements are correct?
- a. 2 and 3

4.

- b. 1 and 2
- c. 1 and 3
- d. 1, 2 and 3
- 5. Which of following is the Nyquist diagram for the open loop function

$$G(s).H(s) = \frac{5}{s(1+0.1s)(1+0.01s)}?$$

6. Consider the following statements associated with and gain margins :

- 1. They are a measure of closeness of the polar plot the -1 + j0 point
- 2. For a non-minimum phase to be stable it must have positive phase and gain margins
- 3. For a minimum phase system to be stable, both the margins must be positive

Which of the above statements is / are correct?

- a. 2 and 3
- b. 1 and 3
- c. 1 and 2
- d. 1 alone
- 7. Consider the following statements regarding a phase-lead compensator :
 - 1. It increases the bandwidth of the system
 - 2. It helps in reducing the steady state error due to ramp input
 - 3. It reduces the overshoot due to step input

Which of the above statements is/are correct?

- a. 1 and 2
- b. 1 and 3
- c. 2 and 3
- d. 1 alone

- 8. Consider the following performance characteristics:
 - 1. Reduced velocity constant for a given relative stability
 - 2. Reduced gain cross-over frequency
 - 3. Reduced bandwidth

4. Reduced resonance peak of The system Which of these performance characteristics are achieved with the phase-lag compensation?

- a. 1 and 2
- b. 1 and 3
- c. 2, 3 and 4
- d. 1, 2, 3 and 4
- 9. The constant N loci represented by the equation $x^2 + x + y = 0$ where

 $x = \text{Re} | G(j\omega) |$ and $y = \text{Im} | G(j\omega) |$ is for the value of phase angle equal

- a. 45°
- b. 0^0
- c. $+45^{\circ}$
- d. + 90°
- 10. Match List I with list II and select the correct answer :
 - List I (Type of controller)
 - A. Pneumatic controller
 - B. Hydraulic controller
 - C. Electronic controller
 - List II (Operation)
 - 1. Flexible operation
 - 2. High torque high-speed operation
 - 3. Fire and explosion proof operation

A	В	C
1	3	2
1	2	3
3	1	2
3	2	1
	A 1 1 3 3	A B 1 3 1 2 3 1 3 2

- 11. Which of the following are the advantages of FM over AM
 - 1. Better noise immunity is provided
 - 2. Lower bandwidth is required
 - 3. The transmitted power is more useful
 - 4. Less modulating power is required Select the correct answer using the codes given below:
 - a. 1, 2 and 3
 - b. 2, 3 and 4
 - c. 2 and 4
 - d. 1, 3 and 4
- 12. Match list with list II and select the correct answer :

2 of 15

LIST I	L	ist	I
--------	---	-----	---

- A. Television
- B. Radio
- C. Radar
- D. Data communication
- List II
- 1. Either AM or FM used
- 2. Both AM and FM are used
- 3. PCM is used
- 4. Digital system

	А	В	С	D
a.	4	3	1	2
b.	2	1	3	4
c.	4	1	3	2
d.	2	3	1	4

- 13. Which of the following pulse modulations is analog?
 - a. PCM
 - b. Differential PCM
 - c. PWM
 - d. Delta
- 14. In asymchronous TDM, for n signal sources, each frame contains in slots, where m is usually
 - a. less than n
 - b. 2n
 - c. n
 - d. greater than 2n
- 15. In free space line of sight propagation case, the transmission losses between transmitter and receiver increase with frequency (f) as
 - a. f
 - b. f^2
 - c. f^4
 - d. $f^{1/2}$
- 16. In a cellular communications system, path loss between transmitter and receiver is due to
 - a. scattering from buildings, trees, vehicles and other structures only
 - b. reason at (a) above and due to reflections from ground only
 - c. reasons at (a) and (b) above along with reflectional from ionosphere only
 - d. reasons at (a), (b) and (c) above along with loss due to surface wave phenomenon
- 17. Match List I with list II and select the correct answer : List I
 - List I
 - A. Surface waves

- B. Duct formation
- C. Ionospheric propagation
- D. VLF propagation

List II

- 1. Super refraction
- 2. Wave guide mode
- 3. Vertical polarization
- 4. Reflection
- А В С D 2 a. 3 1 4 3 2 b. 1 4 3 4 2 c. 1 d. 1 3 2 4

18. Consider the following types of modulation:

- 1. Amplitude modulation
- 2. Pulse modulation
- 3. Frequency modulation
- 4. Phase modulation

Which of the above modulations are used for telecasting TV programmes?

- a. 3 and 4
- b. 2 and 3
- c. 1 and 2
- d. 1 and 4
- 19. Match list I with list II and select the correct answer :
 - List I (Functions)
 - A. Height of raster
 - B. Width of raster
 - C. Picture contrast
 - D. Picture brightness

List II (TV circuits)

- 1. Video amplifier
- 2. Vertical amplifier
- 3. Horizontal amplifier
- 4. d.c. bias on picture tube

	А	В	С	D
a.	2	3	1	4
b.	1	4	2	3
c.	2	4	1	3
d.	1	3	2	4

- 20. If the average power of radar transmitter is 2 kW and the peak power of the transmitter is 1000 kW, what will be the duty cycle ?
 - a. 0.002
 - b. 0.02
 - c. 0.001
 - d. 0.01

- 21. A radar receives an echo from a target 20 micro seconds after sending the signal. The approximate range of the target is
 - a. 300 m
 - b. 3000 m
 - c. 600 m
 - d. 6000 m
- 22. Dopper effect is employed in which of the following?
 - 1. Moving target plotting on ppI
 - 2. The MTI system
 - 3. FM radar
 - 4. CW radar

Select the correct answer using the codes given below:

- a. 2, 3 and 4
- b. 1, 2 and 3
- c. 1, 2 and 4
- d. 1, 3 and 4
- 23. Match list 1 with list II and select the correct answer:

List I

- A. Pulsed radar system
- B. Moving target radar
- C. CW radar
- D. Phase shifter

List II

- 1. Phased array radar
- 2. Doppler radar
- 3. Magnetrons are in use
- 4. Search radar

	А	В	С	D
a.	4	2	3	1
b.	3	1	4	2
c.	4	1	3	2
d.	3	2	4	1

- 24. Which of the following can be used to improve range resolution in a Radar?
 - a. Short duration pulse
 - b. Long duration pulse
 - c. High frequency of operating signal
 - d. Increasing pulse width
- 25. Fading is
 - a. change in polarization only at receiver end
 - b. change in frequency only at receiver end
 - c. fluctuation in signal strength at receiver
 - d. change in phase only at receiver end
- 26. Consider the following:

- 1. Sign Flag
- 2. Zero Flag
- 3. Carry Flag
- 4. Parity Rag

Which of the above flags of 8085 get affected by the instruction SUB B?

- a. 1 and 2
- b. 1 and 3
- c. 3 and 4
- d. 1, 2, 3 and 4
- 27. The correct sequence. of subsystems of Klystron amplifier as they appear in the direction of flow of the electron beam is
 - a. Buncher cavity, Cathode, Collector, Catcher cavity
 - b. Buncher cavity, Cathode, Catcher cavity, Collector
 - c. Cathode, Buncher cavity, Catcher cavity, Collector
 - d. Cathode, Buncher cavity, Collector, Catcher cavity
- 28. The use of a cache in a computer system increases the
 - a. available memory space for the program
 - b. available memory space for data
 - c. average speed of memory access
 - d. addressing range of CPU
- 29. Consider the following :
 - 1. Input device
 - 2. Arithmetic and logic unit
 - 3. Control unit
 - 4. Auxiliary memory
 - 5. Main memory
 - 6. Active hub
 - Which of these form part of CPU ?
 - a. 1, 4 and 6
 - b. 2, 3 and 6
 - c. 2, 4 and 5
 - d. 2.3 and 5
- 30. Which one of the following is not a characteristic of RISC processor design?
 - a. One instruction per cycle
 - b. Register- to -register operations only
 - c. Simple address modes
 - d. Register- to memory operations only
- 31. The following micro operations are part of interrupt cycle of a control unit :
 - 1. MAR \leftarrow save-address
 - 2. PC \leftarrow routine-address
 - 3. MBR \leftarrow (PC)

4. Memory \leftarrow (MBR)

Which of the following is the ordered order of their occurrence?

- a. 1, 2 and 3
- b. 2, 3 and 1
- c. 2, 1 and 3
- d. 3, 1 and 2
- 32. Which of the following is not a characteristic of transparent DMA mode of I/O operation?
 - a. The external logic steals cycles from the CPU
 - b. The normal rate of execution is slowed down
 - c. Only one word can be transferred at a time
 - d. Data is transferred to/from memory directly
- 33. A typical cell, for a dynamic RAM can be implemented by using how many MOS transistors?
 - a. Six
 - b. Five
 - c. One
 - d. Two
- 34. The contents of accumulator in an 8085 microprocessor are altered after the execution of the instruction?
 - a. CMPC
 - b. CPI3A
 - c. ANISC
 - d. ORAA
- 35. In an 8085 microprocessor after the execution of XRAA instruction
 - a. the carry flag is set
 - b. the accumulator contains FF_H
 - c. the content of accumulator is shifted by one
 - d. the zero flag is set
- 36. A microprocessor has 24 address lines and32 data lines. If it uses 10 bits of op code,the size of its Memory Buffer Register is
 - a. 22 bits
 - b. 24 bits
 - c. 32 bits
 - d. 14 bits
- 37. In the 8086 instruction ADD DX, [BX] [CI], the addressing mode of source operand is
 - a. Register
 - b. Register Indirect
 - c. Based Indexed

- d. Direct
- 38. The MODEM is used with a personal computer to do which of the following?
 - a. Convert from serial to parallel and vice versa
 - b. Convert signals between TTL ad RS 232 C standard and. vice versa
 - c. Convert from digital to analog signals and vice versa
 - d. To convert the computer to a long distance communication link
- 39. The technology used for display in PC note-books (laptop computers) is
 - a. Light Emitting Diodes display
 - b. Liquid Crystal display
 - c. CRT display
 - d. Plasma display
- 40. Assertion (A) : Operational amplifiers should have a high slew rate for good transient response.

Reason (R): Slew rate is the maximum rate of change of the output voltage of the operational amplifier when a large amplitude step is applied to its input.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 41. Assertion (A) : An operational amplifier should have, a low input offset current.Reason (R) : Input impedance of op-amp should be very high.
 - a. Both A and R are true and R is the correct explanation of A
 - b. Both A and R are true but R is NOT the correct explanation of A
 - c. A is true but R is false
 - d. A is false but R is true
- 42. Assertion (A) : An operational amplifier can amplify very low frequency including d.c. signals.

Reason (R): op-amp uses very large coupling capacitor for cascading the various stages.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true

- 43. Assertion (A) : Odd number of lines per frame are used in all TV systems.Reason (R) : Odd number of lines per
 - frame assist interlacing.a. Both A and R are true and R is the correct explanation of A
 - b. Both A and R are true but R is NOT the correct explanation of A
 - c. A is true but R is false
 - d. A is false but R is true
- 44. Assertion (A) : To obtain high switching speed in BJT based logic circuits, transistors are operated in active region.Reason (R) : In active region transistor works as a linear element.
 - a. Both A and R are true and R is the correct explanation of A
 - b. Both A and R are true but R is NOT the correct explanation of A
 - c. A is true but R is false
 - d. A is false but R is true
- 45. Assertion (A) : Master-slave JK flip-flop is preferred to an edge-triggered J K flip flop in high speed circuits.

Reason (R) : Master-slave JK flip-flop is free from race -around problem.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 46. Assertion (A) : The bandwidth of a control system indicates the noise filtering characteristic of the system.

Reason (R) : The bandwidth is a measure of ability of a control system to reproduce the input signal.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 47. Assertion (A) : $G(s) = \frac{10(s-25)}{s(s+1)(s+5)}$

represents a non-minimum phase transfer function.

Reason (R) : A minimum phase transfer function has the property that its magnitude and phase are uniquely related.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 48. Assertion (A) : Addition of a pole to the open loop transfer function of a system increases the rise time of the closed loop step-response.

Reason (R) : Additional pole has the effect of reducing the bandwidth of the system.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 49. Assertion (A) : The noise generated by a resistor depends upon its operating temperature.

Reason (R) : Average noise power generated in a resistor is given by $Pn = kT \Delta f$, where

- k = Boltzmann's constant,
- T = Temperature in degree Kelvin,

 $\Delta f = Bandwidth of interest.$

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 50. Assertion (A) : The demodulated output power spectral density is parabolic over the range |f| < w for FM where w is the signal bandwidth.

Reason (R) : FM demodulation is essentially a differentiation process.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 51. Assertion (A) : if the index of modulation (m_f) of an FM signal gradually increases beyond 0.25, it will contribute to the generation of a progressively larger number of side bands separated by the modulation frequency (f_m) .

Reason (R) : A large modulation index will generate a finite number of side bands.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 52. Assertion (A) : SSB transmission is not appropriate for rectangular pulse transmission.

Reason (R): Whenever SSB modulating signal has abrupt transitions, the resulting envelope A(t) gives rise to envelope horns.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 53. Assertion (A) : GaAs is preferred to silicon for fabrication of Gunn diode.

Reason (R) : GaAs has better frequency stability than silicon.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 54. Assertion (A) : In a Helix TWTA, an attenuator is used.

Reason (R) : The attenuator helps proper bunching of electrons in the TWT.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 55. Assertion (A) : TE_{10} mode is the dominant mode ma rectangular wave guide. Reason (R) : TE_{10} mode has the lowest cut-off frequency for which the wavelength is double the broadwall dimension.
 - a. Both A and R are true and R is the correct explanation of A
 - b. Both A and R are true but R is NOT the correct explanation of A
 - c. A is true but R is false

- d. A is false but R is true
- 56. Assertion (A) : Masers and lasers are suitable for radio astronomy and other extra-terrestrial communications.Reason (R) : These devices are highly

directional, coherent power devices with extremely low noise figure.

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is NOT the correct explanation of A
- c. A is true but R is false
- d. A is false but R is true
- 57. An IMPATT diode has a drift length of $4\mu m$. The drift velocity of Si is $10^5 m/s$. The operating frequency of the IMPATT diode is
 - a. 25 GHz
 - b. 20 GHz
 - c. 12.5 GHz
 - d. 125 GHz
- 58. Match List I (Microwave II (Interaction device) with List process involved) and select the correct answer:
 - List I
 - A. Reflex Klystron
 - B. Gyrotron
 - C. Backward wave oscillator
 - D. Fixed-frequency
 - E. magnetron
 - 1. List II
 - 2. Spiralling beam
 - 3. Velocity modulation with travelling wave structure
 - 4. Velocity modulation with resonant cavities Crossed field

	А	В	С	D
a.	4	2	1	3
b.	3	1	2	4
c.	4	1	2	3
d.	3	2	1	4

- 59. For using as a local oscillator for frequency measurements, the most suitable microwave source would be
 - a. Travelling wave tube
 - b. Double cavity klystron
 - c. Reflex klystron
 - d. Magnetron
- 60. Electromagnetic oscillations are sustained in a two-cavity kylstron due to
 - a. feedback of output power to the input cavity in proper phase

- b. feedback of output power to the input cavity with phase difference of 180°
- c. feedback of power from external load to input cavity in proper phase
- d. feedback of power from thermal noise of load circuit with phase lag of 90° .
- 61. A certain optical fibre has refractive index of clad $(n_1) = 1.40$ be and that of core $(n_2) = 1.05$. Its numerical aperture will be
 - a. 0.8575
 - b. 0.9260
 - c. 0.3500
 - d. 0.1585
- 62. Match list I (Circuit name) with list II (Sparameter) and select the correct answer : List I
 - A. Circulator (3-port)
 - B. Directional Coupler
 - C. Magic Tee
 - D. Rate Race Junction List II

1.	$\begin{bmatrix} 0\\S_{12}\\0\\S_{14}\end{bmatrix}$	$S_{12} \\ 0 \\ S_{23} \\ 0$	$0 \\ S_{23} \\ 0 \\ S_{34}$	$\begin{bmatrix} S_{14} \\ 0 \\ S_{34} \\ 0 \end{bmatrix}$		
2.	$\begin{bmatrix} 0\\S_{12}\\S_{31}\\S_{41}\end{bmatrix}$	$S_{12} \\ 0 \\ S_{32} \\ S_{42}$	$S_{13} \\ S_{23} \\ 0 \\ S_{43}$	$\begin{bmatrix} S_{14} \\ S_{24} \\ S_{34} \\ 0 \end{bmatrix}$		
3.	$\begin{bmatrix} 0\\S_{12}\\S_{13}\end{bmatrix}$	S ₁₂ 0 S ₂₃	$\begin{bmatrix} S_{13} \\ S_{23} \\ S_{33} \end{bmatrix}$			
4.	$\begin{bmatrix} 0\\0\\1/\sqrt{2}\\1/\sqrt{2} \end{bmatrix}$	$\frac{1}{2}$ 1 - 1	0 0 $\sqrt{2}$ $1/\sqrt{2}$	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ 0	$\frac{1}{\sqrt{2}}$ $-\frac{1}{\sqrt{2}}$ 0 0	
0	A 1		л В	C 4	D 2	
a. h	1		∠ ∕I	4 2	5 1	
о. с	5 1		- 1	$\frac{2}{2}$	3	
d.	3		2	4	1	

- 63. A rectangular wave guide measure 3×4.5 cm internally and has a 9 GHz signal propagated in it. The cut off wavelength for TE₁₀ mode is
 - a. 5 cm

- b. 10 cm
- c. 15 cm
- d. 9 cm
- 64. Which of the following is not possible in a circular wave guide?
 - a. TE_{10}
 - b. TE₀₁
 - c. TE₁₁
 - d. TE₁₂
- 65. In general, the reflection coefficient on a transmission line depends
 - a. only upon the distance from the source and attenuation of the line
 - b. only upon the level of voltage impressed upon the line, and load impedance
 - c. only upon the level of power flowing in the line and attenuation in the line
 - d. upon the distance from the source, attenuation in the line and also upon the load impedance
- 66. Consider the following features :
 - 1. Wider bandwidth due to higher frequencies.
 - 2. Smaller component size leading to smaller systems.
 - 3. Existence of low signal losses.
 - 4. Lower interference due to lower signal crowding.

Use of RF/microwaves in system application results in which of these advantages?

- a. 1, 2 and 4
- b. 1, 3 and 4
- c. 2, 3 and 4
- d. 1, 2 and 3
- 67. In a VSWR measurement, a square law detector is used to detect the signal level. The voltmeter reads maximum and minimum as 64 mV and 16 mV respectively. The VSWR of the system will be
 - a. 4
 - b. 2
 - c. 8
 - d. 16
- 68. Resistive films in MIC's are needed to fabricate resistors and attenuators. The features desirable in resistive films are
 - a. low-temperature coefficient of resistance (TCR)
 - b. lower loss

- c. good adhesion to the substrate
- d. good etchability and solderability
- 69. The type of antenna to be used for producing circularly polarized beams is
 - a. pyramidal horn
 - b. log-periodic array
 - c. paraboloid
 - d. helical antenna
- 70. In a material characterized by a complex permittivity, the imaginary part is a measure of
 - a. dielectric strength of the material
 - b. energy stored in the electric field
 - c. losses in the material
 - d. energy stores in the magnetic field
- 71. Consider the following statements :

For space communications, the carrier frequencies are generally greater than 108 MHz, because it is desirable

- 1. to avoid interference due to FM band.
- 2. to penetrate the ionosphere without any reflection.
- 3. to increase the coverage area.
- 4. to have less skip distance.

Which of the above statements are correct?

- a. 1, 2 and 3
- b. 1 and 4
- c. 2 and 4
- d. 1, 2, 3 and 4
- 72. In signed magnitude representation, the binary equivalent of 22.5625 is (the bit before comma represents the sign)
 - a. 0, 10110.1011
 - b. 0, 10110.1001
 - c. 1, 10101.1001
 - d. 1, 10110.1001
- 73. Which of the following represents ' $E3_{16}$ '?
 - a. $(ICE)_{16} + (A2)_{16}$
 - b. $(IBC)_{16} (DE)_{16}$
 - c. $(2BC)_{16} (1DE)_{16}$
 - d. $(200)_{16} (11D)_{16}$
- 74. The computer program which converts statements written in high level language to object code is known as
 - a. Assembler
 - b. Compiler
 - c. Disassembler
 - d. Operating system

75.

What will be values of A and B, respectively, when printed for the given flow chart?

- a. 10 and 20
- b. 5 and 15
- c. 20 and 10
- d. 15 and 5
- 76. Consider the following C structure and declaration:
 - Struct date {
 - int day;
 - int month;

int year;

};

Struct data * pd;

Which of the following is the correct method to refer to the year number?

- a. (* pd) . year
- b. (* pd) * year
- c. $(* pd) \rightarrow year$
- d. $pd \rightarrow year$
- 77. The different classes of formal parameters used in PASCAL are
 - a. value and variable parameters
 - b. procedure and function parameters
 - c. value, variable, procedure and function parameters
 - d. variable, procedure and function parameters
- 78. Which one of the following is not a linear data structured
 - a. Array
 - b. Linked list

10 of 15

- c. Stack
- d. Tree
- 79. A data structure in which insertions and deletions are possible at either end, is called a
 - a. queue
 - b. deque
 - c. stack
 - d. enque
- 80. A circuit which resonates at 1 MHz has a Q of 100. Bandwidth between half-power points is
 - a. 10 kHz
 - b. 100 kHz
 - c. 10 Hz
 - d. 100 Hz
- 81. In a circuit, if the open loop gain is 10^6 and output voltage is 10 volt, the differential voltage should be
 - a. 10 µV
 - b. 0.1 μV
 - c. 100 μV
 - d. 1 μV
- 82. An operational amplifier possesses
 - a. very large input resistance and very large output resistance
 - b. very large input resistance and very small output resistance
 - c. very small input resistance and very small output resistance
 - d. very small input resistance and very large output resistance
- 83. A BJT is to be used in a high frequency circuit in common emitter amplifier for a higher upper cut off frequency (c_{μ} , C_{π} and r_0 have their usual meanings)
 - a. C_{μ} should be as small as possible
 - b. r_0 and C_{μ} should be as large as possible
 - c. C_{π} and C_{μ} should be as large as possible
 - d. r_0 , C_{π} and C_{μ} should be as large as possible
- 84. Consider the following statements regarding a common emitter amplifier. It can be converted into an oscillator by :
 - 1. providing adequate positive feedback
 - 2. phase shifting the output by 180° and feeding this phase-shifted output to the input
 - 3. using only a series tuned circuit as a load on the amplifier

4. using a negative resistance device as a load on the amplifier

Which of the above statements are correct?

- a. 1, 2, 3 and 4
- b. 1 and 2
- c. 1, 3 and 4
- d. 3 and 4
- 85. Consider the following statements :

In order to generate square wave from a sinusoidal input signal one can use

- 1. Schmitt trigger circuit.
- 2. Clippers and amplifiers.
- 3. Monostable multivibrators.

Which of the above statements is/are correct?

- a. 1 alone
- b. 1 and 2
- c. 2 and 3
- d. 1, 2 and 3
- 86. An op-amp circuit is shown in the figure given below. Different inputs and output are given under List I and List II. Match List I (Inputs) with List II (Outputs) and select the correct answer:

- 87. The PIV rating of the diodes used in power supply circuits are chosen by which one of the following criteria? (V_m is the peak input supply voltage to the rectifier circuit used in the power supply)
 - a. The diodes that are to be used in a full wave rectifier should be rate 2 V_m and in bridge rectifier equal to V_m
 - b. The diodes that are to be used in a full wave rectifier should be rated V_m and in bridge rectifier equal to $2 V_m$
 - c. All diodes should be rated for V_m only
 - d. All diodes should be rated for 2 V_m
- 88. An RC amplifier stage has a bandwidth of 500 kHz. What will be the rise time of this amplifier stage ?
 - a. 0.35 µs
 - b. 0.7 μs
 - c. 1.0 µs
 - d. 2.0 µs
- 89.

In the circuit shown above, If $R_1 >> R_p$ and the impulses can completely saturated transistor Q_1 , then the output voltage, V_0 will be

- 90. The power input to an amplifier is 2 μ W. The power gain of the amplifier is 40 dB. The output power of the amplifier is
 - a. 80 µW
 - b. 200 µW
 - c. 20 mW
 - d. 80 mW
- 91. Given below are 2 sets of diagram one set shows 4 circuits with inputs; the other shows the output (V₀). Match List I with List II and select the correct answer :

List I (Inputs)

www.estudentzone.com

92. A class-B push-pull type amplifier with transformer coupled load uses two transistors rated 10 W each. What is the maximum power output one can obtain at the load from this circuit?

- a. 40 W
- b. 50 W
- c. 60 W
- d. 70 W
- 93. In the circuit shown,

the transistor is biased at

- a. 0 mA
- b. 5 mA
- c. 3.9 mA
- d. ∞
- 94. The output V_0 will be (assume ideal opamp)
 - a. equal to zero because the input it zero
 - b. dependent on element values hence nothing can be predicted without a knowledge of element values
 - c. a square wave varying between $+V_{cc}$ and $-V_{cc}$
 - d. a sinusoidal wave of amplifier V_{cc}

95. An amplifier will generate stable sinusoidal oscillations if we provide feedback such that

- a. its pole lie close to $j\omega$ axis in the right half of s-plane
- b. its poles lie close to $j\omega$ axis in the left half of s-plane
- c. its poles lie on the +ve real axis in splane
- d. its poles lie anywhere in s-plane

d. $3 \sin(100 t) + 1/2$

13 of 15

- 97. The open collector output of two 2-input NAND gates are connected to a common pull-up resistor. If the inputs of the gates are A, B and C, D respectively, the output is equal to
 - a. *A.B.CD*
 - b. A.B + C.D
 - c. A.B + C.D
 - d. *A.B* . *C.D*
- 98. Consider the following digital circuits:
 - 1. Multiplexers
 - 2. Read Only Memories
 - 3. D -latch
 - 4. Circuit as shown

Which of these come under the class of combinational circuits?

- a. 1 and 2
- b. 3 and 4
- c. 1, 2 and 3
- d. 1, 2, 3 and 4
- 99. With 4 Boolean variables, how many Boolean expressions can be formed ?
 - a. 16
 - b. 256
 - c. 1024(1K)
 - d. 64 K(64 × 1024)
- 100. Match list I with list II and select the correct answer:
 - List I (Logic gates)
 - A. TTL
 - B. ECL
 - C. HTL
 - D. CMOS
 - List II (Operation)
 - 1. More logical swing
 - 2. Low power dissipation
 - 3. Current hogging
 - 4. NOR / OR output
 - 5. Totem-pole output

А	В	С	D
3	2	5	1
3	2	4	5
2	3	4	5
2	3	5	1
	A 3 2 2	A B 3 2 3 2 2 3 2 3 2 3	A B C 3 2 5 3 2 4 2 3 4 2 3 5

- 101. How is inversion achieved using EX OR gate?
 - a. Giving input signal to the two input lines of the gate tied together
 - b. Giving input to one input line and logic zero to the other line
 - c. Giving input to one input line and logic one to the other line
 - d. Inversion cannot be achieved using EX—OR gate
- 102. Match list I with list II and select the correct answer :

List I (Logic type)

- A. DTL
- B. TTL
- C. ECL
- D. MOS

List II (Power dissipation per gate in mW)

- 1. 55
- 2. 10
- 3. 8
- 4. 1
- 5. 40

	-			
	А	В	С	D
a.	3	5	4	2
b.	1	2	5	4
c.	3	2	5	4
d.	1	5	4	2

Figure I, II and Ill show different faces of a dice. The symbol at the bottom of Figure III is

- a. plus
- b. dot
- c. wave
- d. square

14 of 15

104. Consider the following circuits (Assume all gates to have a finite propagation delay):

Which of these circuits generate a periodic square wave output?

- a. 1 and 2
- b. 3 and 4
- c. 2, 3 and 4
- d. 1, 2, 3 and 4
- 105.

The minimized expression for the given K map (x :don't care) is

- a. A + BC
- b. B + AC
- c. C + AB
- d. A B C
- 106. Consider the Boolean expression : X + ABCD + A B CD + A BCD + A C B D The simplified form of X is
 - a. C + D
 - b. BC
 - c. CD

d. $\overline{B}C$

- 107. Which of the following is a self-complementing code?
 - a. 8421 code
 - b. Excess 3 code
 - c. Pure binary code
 - d. Gray code
- 108. Match List I with List II and select the correct answer:
 - List I
 - A. TTL
 - B. ECL
 - C. MOS
 - D. CMOS

List II

- 1. Low propagation delay
- 2. Low power consumption
- 3. Higher packing density on Si wafer
- 4. Saturated bipolar logic
- 5. High fan-out

	Α	В	С	D
a.	4	1	3	2
b.	5	3	2	1
c.	4	3	2	1
d.	5	1	3	2

- 109. A sequence detector is required to give a logical output of 1 whenever the sequence 1011 is detected in the incoming pulse stream. Minimum number of flip-flops needed to build the sequence detector is
 - a. 4
 - b. 3
 - c. 2
 - d. 1
- 110. A number is expressed in binary two's complement as 10011. Its decimal equivalent value is
 - a. 19
 - b. 13
 - c. -19
 - d. -13
- 111. Consider the following registers :
 - 1. Accumulator and B register
 - 2. B and C registers
 - 3. D and E registers
 - 4. H and L registers

Which of these 8-bit registers of 8085 μ P can be paired together to make a 16-bit register?

- a. 1, 3 and 4
- b. 2, 3 and 4

- c. 1 and 2
- d. 1, 2 and 3
- 112. Consider the following instructions of $8085 \ \mu\text{P}$:
 - 1. MOV M, A
 - 2. AODC
 - 3. MVI A, FF
 - 4. CMP M

Which of these cause change in the status of flag(s) ?

- a. 1 and 2
- b. 1, 2 and 3
- c. 3 and 4
- d. 2 and 4
- 113. A Read/Write memory chip has a capacity of 64 kBytes. Assuming separate data and address lines and availability of chip enable signal, what is the minimum number of pins required in the IC chip?
 - a. 28
 - b. 26
 - c. 24
 - d. 22
- 114. Consider the following single-loop feedback structure illustrating the return difference :

The return difference for A is

- b. $1 + A \beta$ c. $A\beta$
- $\begin{array}{c} 1 + A\beta \\ A\beta \end{array}$

$$1-A\beta$$

115. Consider the following amplifier with –ve feedback:

If the closed-loop gain of the above amplifier is + 100, the value B will be

a.
$$-9 \times 10^{-3}$$

b. $+9 \times 10^{-3}$
c. -11×10^{-3}
d. $+11 \times 10^{-3}$

116.

Which of the following is the open loop transfer function of the root loci shown in figure ?

a.
$$\frac{K}{s(s+T_1)^2}$$

b.
$$\frac{K}{(s+T_1)(s+T_2)^2}$$

c.
$$\frac{K}{(s+T)^3}$$

d.
$$\frac{K}{s^2(sT_1+1)}$$

- 117. The instrument used for plotting the root locus is called
 - a. Slide rule
 - b. Spirule
 - c. Synchro
 - d. Selsyn
- 118. A control system has

$$G(s)H(s) = \frac{K(s+1)}{s(s+3)(s+4)}$$

Root locus of the system can lie on the real axis

- a. between s = -1 and s = -3
- b. between s = 0 and s = -4
- c. between s = -3 and s = -4
- d. towards left of s = -4
- 119. A system has a single pole at origin. Its impulse response will be
 - a. constant
 - b. ramp
 - c. decaying exponential
 - d. oscillatory

120. The mechanical system shown below has its pole(s) at:

