(2) Atten (3) Assu (4) Establish (b) What ar (c) Explain v	npt any forming suita Will Row h relation e the meta with neat ska am without	ur ques able dat between nods of etch prod	a where duty, irrigation cedure to	om re e neo delta on, ex o dete	and b	y sta ase p any c seepa	ting the geriod. The wife the	em cl 2//s	dearly 109	itch.	Jage D
(b) The grownich 7 40% for weeks for rice may	Explain methods to compute average rainfall over a basin. The gross command area for an irrigation canal is 20,000 hectares out of which 75% is culturable commanded area. The intensity of irrigation is 40% for rabi and 10% for rice. If Kor period is 4 weeks for rabi and 2.5 weeks for rice, determine the outlet discharge. Outlet factors for rabi and rice may be assumed as 1800 hectare/cumec and 775 hectares/cumec. Also calculate delta for each case.										
of 6 hou of the d derive a	The stream flows due to three successive storms of 2.9, 4.9 and 3.9 cm of 6 hours duration each on a drainage basin are given below. The area of the drainage basin is 118.8 sq. km. Assuming a base flow of 20 cumec, derive a 6 hour unit hydrograph for the drainage basin. An average storm loss of 0.15 cm/hr may be assumed.										ea c,
Time (hr)	0 3	6 9	9 12	15	18	21	24	27	30	33	
Flow (cumec)	20 50	92 14	40 199	202	204	144	84.5	45-5	29	20	
(b) Enlist d	e) Enlist different types of spillways and explain any two in detail.										10
is 80 m rate of radial di	 (a) A 0-4 m diameter well fully penetrates an unconfined aquifer whose bottom is 80 m below the undisturbed ground water table. When pumped at a steady rate of 1-50 m³/min. The drawdowns observed in two observation wells at radial distances of 5 m and 15 m are, respectively, 4 m and 2m. Determine the drawdown in the well. (b) Explain the following terms: (i) Specific yield (ii) Transmissibility (iii) Aquifer (iv) Aquiclude. 									dy at	
(b) Explain (i) S										10	
and bott	A 20 m high concrete dam having trapezoidal section has top width 2 m and bottom width 16 m. The face of the dam exposed to water has a batter of 1:10. On the reservoir side water stands upto top. Assumping weight										er
of conc	of concrete = $23.54 \frac{kN}{m^3}$, coefficient of friction = 0.75 and allowable shear										ar
stress =	stress = $490.5 \frac{kN}{m^2}$, and taking into account, only the weight of the dam,										m,
	ressure ar							of sa	afety	agair	st
(b) Describ	overturning, against sliding and shear friction factor. Describe with neat sketches the various methods adopted for controlling seepage through the body of the dam and through the foundation.									ng 10	
	Design an irrigation channel for the following data : Discharge = 20 cumecs,										s, 10
(b) List the	Silt factor = 1.0. List the salient features of cross-drainage works. Sketch and explain syphon aqueduct and super passage.										on 10
7. Write notes (a) Arch				(b)	Band	hara	irrigati	on			20