

DIPLOMA IN ELECTRICAL AND MECHANICAL ENGINEERING (DEME)

Term-End Examination June, 2006

BEE-031: ELECTRICAL TECHNOLOGY

Time: 2 hours Maximum Marks: 70

Note: Answer **five** questions in all. Question number 1 is **compulsory**. Attempt any **four** of the remaining questions. Use of calculator is allowed.

- 1. (a) Select the correct answer from the given four alternatives. $1 \times 7 = 7$
 - (i) Maximum power from a source having internal resistance \boldsymbol{R}_i is delivered to the Resistive Load \boldsymbol{R}_L if
 - (a) $R_i = R_L$
 - (b) $R_i > R_I$
 - (c) $R_i < R_L$
 - (d) $R_i = R_L^2$

- (ii) Three resistances of R Ω each are connected in delta. Its equivalent star will comprise resistance of value
 - (a) 3R each
 - (b) $\frac{R}{3}$ each
 - (c) R each
 - (d) 3R, R, $\frac{R}{3}$
- (iii) Energy stored in an inductor is
 - (a) $\frac{1}{2} L I^2$
 - (b) $\frac{1}{2} I L^2$
 - (c) LI^2
 - (d) L I
- (iv) Power factor of an AC circuit is equal to
 - (a) $\frac{R}{X_L}$
 - (b) $\frac{R}{X_C}$
 - (c) $\frac{R}{Z}$
 - (d) $\frac{Z}{R}$

- (v) Emf induced in each conductor of a d.c. machine is
 - (a) an alternating emf
 - (b) a direct emf
 - (c) a pulsating emf
 - (d) any wave shape
- (vi) A transformer has maximum efficiency at $\frac{3}{4}$ full load. The ratio of its iron loss and full load copper loss is
 - (a) $\frac{16}{9}$
 - (b) $\frac{4}{3}$
 - (c) $\frac{3}{4}$
 - (d) $\frac{9}{16}$
- (vii) An induction motor has synchronous speed of 1500 rpm. What will be the slip, if it is running on a speed of 1450 rpm?
 - (a) 3.33%
 - (b) 3%
 - (c) 5%
 - (d) 6%

(b) Write **true** or **false** for the following statements:

 $1 \times 7 = 7$

- (i) If the area of plates of a capacitor is doubled and distance between plates is halved then capacitance becomes 4 times.
- (ii) When temperature is decreased the resistance of carbon is increased.
- (iii) If a source is delivering maximum power to load, then efficiency of the circuit is 50%.
- (iv) An emf of 8 V is induced in a coil of inductance 4 H, then the rate of change of current is 0.5 A/s.
- (v) Average value of sinusoidal alternating voltage is $\frac{1}{\sqrt{2}}$ times of its maximum value
- (vi) The construction of DC generator and DC motor is slightly different.
- (vii) The core of transformer is made of insulating material.
- 2. (a) State superposition theorem. Explain using a practical problem.

(b) Find the value of \boldsymbol{R}_L in network shown in figure necessary to obtain maximum power in it. Also calculate current in \boldsymbol{R}_I

3. (a) Define the following terms:

7

7

- (i) KVL
- (ii) KCL
- (iii) Mesh & loop
- (iv) Linear and active networks
- (b) Calculate current in 5Ω resistor in network shown in figure :

4.	(a)	Deduce the emf equation for a single phase transformer.	7
	(b)	A 100 KVA transformer has 2 KW iron loss and 5 KW full load copper loss. Calculate its maximum efficiency when it delivers load at unity power factor.	7
5.	(a)	Explain constructional features and working of a 3-phase induction motor.	7
	(b)	A 3-phase, star-connected alternator has 72 slots in stator, each slot contains 10 conductors, the stator winding is wound for 6 poles. Calculate voltage	
		induced at terminals of alternator if speed of rotor is 1000 rpm and flux per pole is 0.5 Wb.	7
6.	(a)	Draw different characteristics of	7
		(i) DC series motor	
		(ii) DC shunt generator	
	(b)	Write need of starter for DC motors. Explain working of three point starter.	7
7.	(a)	How is an induction motor different from a synchronous motor? Write their applications.	7
	(b)	A synchronous motor is not a self-starting motor. Discuss different methods of its starting.	7

- **8.** Write short notes on any **two** of the following: $2 \times 7 = 14$
 - (i) Thevenin's theorem
 - (ii) Voltage build-up in DC shunt generator
 - (iii) Three phase rotating magnetic field
 - (iv) Voltage regulation in alternator
 - (v) Equivalent circuit of transformer