[3762]-171

S.E. (Chemical) (I Sem.) EXAMINATION, 2010

CHEMISTRY-I

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Answer any three questions from Section I and any three questions from Section II.
 - (ii) Answers to the two Sections should be written in separate answer books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary,

SECTION I

- 1. (a) What is LCAO approximation? Draw the MO diagram for nitrogen molecule.
 - (b) Draw the resonating structures for the following:
 - (i) Renol
 - (ii) Phenoxide ion
 - (iii) P-nitroaniline.

(c) Discuss the structure of a carbocation, carbanion and free radical.

Or

2. (a) What is aromaticity? Using Hückel's rule explain the aromaticity of the following compounds: [6]

- (b) What is the effect of resonance and inductive effect on pKa values of acids and bases? [6]
- (c) Discuss the following with examples:
 - (i) Electrophiles
 - (ii) Free radicals
 - (iii) Elimination reactions.
- 3. (a) What are the factors favouring SN¹ and SN² reactions?

 Describe the effect of solvent and effect of leaving group on the reactions.

 [6]
 - (b) Write the mechanism involved in Friedel-Craft's alkylation and acylation reactions. [6]
 - (c) Complete the following reactions:

[6]

- 4. (a) Explain why chlorine acts as trip-para deactivating when it is present on a benzene ling undergoing electrophilic substitution. [6]
 - (b) Give the mechanism of Claisen's rearrangement. [4]
 - (c) Predict the product :

$$(i) \qquad C = N \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{Catalyst} \\ \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad } \\ \underbrace{ \begin{array}{c} \text{C}_{6}\text{H}_{5} \end{array} } \qquad OH \qquad \underbrace{ \begin{array}{c} \text{C}_{6}\text{$$

[3762]-171

5. (a) What is Kohlrausch's law? Calculate the molar conductivity at infinite dilution $\left(\Lambda_m^\infty\right)$ for NH₄OH for the following data:

$$\Lambda_m^{\infty} (PXOH)_2) = 523.3 \text{ S cm}^2 \text{ mol}^{-1};$$

$$\Lambda_m$$
 (BaCl₂) = 280.0 S cm² mol⁻¹;

$$\Lambda_m^{\infty} \text{ (NH}_4\text{Cl)} = 129.8 \text{ S cm}^2 \text{ mol}^{-1}.$$

[4]

(b)	Discuss in detail flame photometry.	[6]
(c)	Describe the redox titration curve of Ce4+ ion solution again	ist (6)
	Fe ²⁺ ion solution.	
	Or	
(a)	Define the following terms :	
	(i) Molar conductivity.	
	(ii) Equivalent conductivity.	
4 7 9	(iii) Specific conductance.	
	(iv) Cell constant.	
	The conductivity of a 0.12 N solution of an electrolyte of	tne
	type M ⁺ A ⁻ is 0.024 S cm ⁻¹ . Calculate its :	
	(i) equivalent conductivity and	
	(ii) molar conductivity.	[6]
(b) Write short notes on :	
	(i) Cas sensing electrode.	le le
	Enzyme based electrode.	[6]
(6	What is a titration curve ? Discuss the titration curve for	or the
	neutralization of a strong acid with a weak base.	[4]

6.

- Derive the integrated rate equation for second-order kir 7. (α) two reactants with same initial concentrations. [6]
 - Rate law for decomposition of N_2O_5 , $N_2O_5 \rightarrow NO_2 + \frac{1}{2} O_2$ is observed

$$R = \frac{-d \left[N_2 O_5 \right]}{dt} = K \left[N_2 O_5 \right]$$

- (i) $N_2O_5 \stackrel{K}{\longleftrightarrow} NO_2 + NO_5 \stackrel{(Kest)}{\longleftrightarrow}$
- $\begin{array}{ccc} (ii) & \mathrm{NO_2} + \mathrm{NO_3} & \xrightarrow{\mathrm{K_1}} & \mathrm{NO_2} + \mathrm{NO} + \mathrm{O_2} & (\mathrm{slow}) \\ \\ (iii) & \mathrm{NO} + \mathrm{NO_3} & \xrightarrow{\mathrm{K_2}} & 2\mathrm{NO_2} & (\mathrm{fast}) \end{array}$

show that rate law is consistent to mechanism proposed. Find S.S.A. for each unstable intermediates involved. [6]

(c) Discuss the Stark-Einstein law of photochemical equivalence. [4]

Perive the integrated rate equation for second order kinetics for two reactants with different initial concentrations. [6]

(b) For the reaction, 2NO + $\mathrm{Cl}_2 \to 2\mathrm{NOCl}$, the data obtained are :

Experiment	[Cl ₂] ₀ ,	[NO] ₀ ,	Initial rate
	mol L-1	mol L ⁻¹	mol L-1 S-1
Ī	0.02	0.01	2.40 × 10 ⁻⁴
II	0.02	0.03	2.16×10^{-3}
ш	0.04 C	0.03	4.32 × 10 ⁻³

Determine :

- (i) Order with respect to Cl₂
- (ii) Rate law to the reaction
- (iii) Rate instant. [6]
- (c) What is activation energy? How is the rate constant of a reaction related to its activation energy? [4]
- 9. What are the different types of chromatography? Describe column chromatography in detail. [6]

(b) Write a short note on Nickel-Cadmium battery.

[6]

(c) Describe the working of any one of the detectors used in gas chromatography.

Or

- 10. (a) Discuss in detail the principle, instrumentation and applications of HPLC.
 [6]
 - (b) What is a fuel cell? Explain working of H2-O2 fuel cell. [6]
 - (c) Enlist the various applications of chromatography. [4]
- 11. (a) Complete the following Nactions:

(b) Give one method each for the synthesis of:

(i) Pyrrole

Ominoline

(iii) Pyridine.

[6]

Write a short note on diazotization and coupling in azo dyes.

- 12. (a) What are phthalein dyes? Describe the method of preparation and uses of phenolphthalein dyes.
 - (b) Predict the product:

(c) Give classification of dyes on the basis of application and chemical structure.

