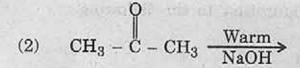
[3762]-81

S.E. (Chem. Engg.) (I Sem.) EXAMINATION, 2010

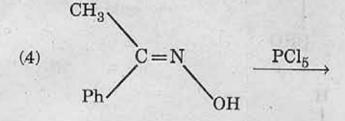
CHEMISTRY-I

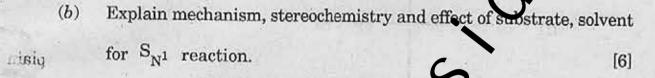
(2003 COURSE)

Time: Three Hours


Maximum Marks: 100

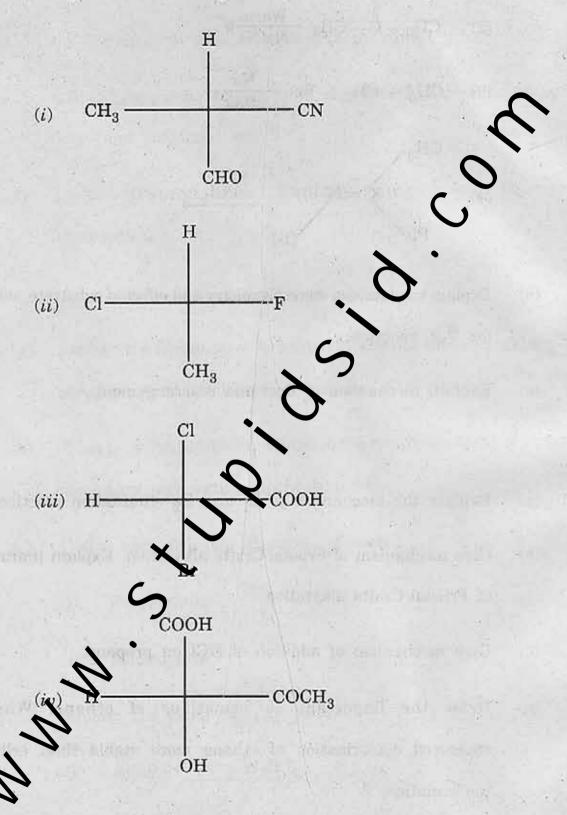
- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 from Section F and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12 from Section II.
 - (ii) Answers to the two Sections should be written in separate answer books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.


SECTION I


- 1. (a) Draw the resonance structure of the following compounds: [6]
 - (i) Annin
 - (ii) Anthracene
 - (iii) p-nitrophenol.

	(b)	Give reasons:	[6]
-13		(i) Pyrrole is weaker base than pyridine.	
		(ii) Chloroacetic acid is more stronger than bromoaceti	c acid
		and iodoacetic acid.	
	(c)	Define Tautomerism. Explain tautomerism in	ethyl
		acetoacetate.	[4]
		Or . O	
2.	(a)	Explain the formation of carbanion by any two methods and e	explo
		structure and stability of carbanion.	[6]
	(b)	What is hyperconjugation . Explain the relative stability of pr	imary,
		secondary and tertiany carbonium ion.	[6]
1	(c)	Define and give two examples of each:	
		(i) El phile	
		(ii) Nucleophile.	[4]
3.	(a)	Predict the products (any three):	[6]
1	4	(1) Aniline conc. H_2SO_4	
[376	52]-81	2	

(3)
$$CH_3 - CH_2 - Br \xrightarrow{Na} ether$$



(c) Explain mechanism of Beckman rearrangement. [4]

Or

- 4. (a) Explain the mechanism of E_1 and E_2 elimination reaction. [6]
 - (b) Give mechanism of Kiedal-Crafts alkylation. Explain limitation of Friedal-Crafts 61 lation. [6]
 - (c) Give mechanism of addition of HCl on propane. [4]
- 5. (a) Draw the important conformations of ethane. Why is staggered conformation of ethane more stable than eclipsed conformation? [6]

[3762]-81

(c)	Give	e preparation methods of the following (at least	one
	each		[6]
	(<i>i</i>)	Furan	
	(ii)	Thiophene	
	(iii)	Pyrrole.	
		Or	
(a)	Give	reason :	
	(i)	Staggered conformation of butane is stable.	
	(ii)	Pyrrole is more reactive than furan.	
	(iii)	Thiophene is more stable than furan and pyrrole.	[6]
<i>b</i>)	(<i>i</i>)	Explain geometrical isomerism with suitable examples.	[4]
	(ii)	Explain nucleophilic substitution in pyridine.	[4]
c)	Predi	ct the products :	
×	(i)	Ndole + $CHCl_3$ + 3 NaOH \rightarrow	
1	6	Quinoline + $HNO_3 + H_2SO_4 \rightarrow$.	[4]

SECTION II

٠.	(a)	Define the surface tension and explain the method for determinat	1011
		of surface tension.	[6]
	(b)	Define coefficient of viscosity. How is it determined?	[6]
	(c)	Find the interplaner distance in a crystal in which a series	s of
		planes produce a first order reflection from a copper X-ray to	ube
		$(\lambda = 1.539 \text{ Å})$ at an angle of 22.5°.	[4]
		Or Or	
8.	(a)	Describe the Bragg's method of crystal analysis.	[6]
	(b)	Derive Stokes' law.	[6]
	(c)	Explain the factors affecting viscosity of liquids.	[4]
9.	(a)	State and explain van der Waals' equation.	[6]
	(b)	What is root mean square velocity and average velocity?	Iow
		are they related ?	[6]
[376	[2]-81	6	

	(6)	The van der waars constants of a gas are $\alpha = 0.751$	dm
	ligest	atm mol^{-2} and $b = 0.0226 \text{ dm}^3 \text{ mol}^{-1}$. Calculate its cr	itical
i de		constants.	[4]
		or	
10.	(a)	Derive kinetic gas equation.	[6]
	(b)	Derive an expression for collision diameter	[6]
	(c)	Oxygen at 1 atm pressure and 0°C has a density of 1.4290 gr	rams
		per litre. Find the RMS velocity of oxygen molecules.	[4]
11.	(a)	Depression in freezing point is a colligative prope	erty.
		Explain.	[7]
	(b)	What is meant by lowering of vapour pressure? Define rela	itive
		lowering of vapour pressure.	[7]
	(c)	1.56 gas of solute dissolved in 100 gm of benzene raised its	B.P.
		ky 2.36°C. The Kb for 1000 gm of benzene is 2.57. Calcu	late
	1	Molecular weight.	[4]
3762	2]-81	기계 가지 사람들이 가득하는 것으로 보고 하는데 되는데 가지 않는데 되었다.	то

- 12. (a) Elevation in boiling point is a colligative property. Explain. [7]
 - (b) State and derive Raoult's law of vapour pressure. Describe any one method to find the relative lowering of vapour pressure of a given solvent. [7]
 - (c) A solution containing 6.32 gm of a non-volatile substance in 86.7 gm of water depressed the F.P. by 5.753°C. Calculate the molecular weight of solute if K_f for 100 gm of water is 18.6.

[3762]-81

۶