## DipIETE - ET/CS (NEW SCHEME) - Code: DE55/DC55

## Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

## JUNE 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of the $\operatorname{Lim}_{x \rightarrow 0} \frac{8^{x}-2^{x}}{x}$ is
(A) $\log 4$
(B) $\log 2$
(C) $\log 6$
(D) $\log 8$
b. If $y=\cos (\sin x)$, then $\frac{d y}{d x}$ is equal to
(A) $\cos x \cdot \sin x$
(B) $-\sin (\sin x) \cdot \cos x$
(C) $\sin ^{2} x \cdot \cos x$
(D) $\cos ^{2} x \cdot \sin x$
c. If $\mathrm{z}=1+\mathrm{i} \sqrt{3}$, then $\mathrm{z}^{2}+4$ is equal to
(A) $\mathrm{z} \sqrt{3}$
(B) $3 z$
(C) 2 z
(D) 4 z
d. The principal argument of -2 i is equal to
(A) $-\pi / 3$
(B) $-\pi / 2$
(C) $\pi / 2$
(D) $\pi / 3$
e. If $|\vec{a}+\vec{b}|=60,|\vec{a}-\vec{b}|=40$ and $|\vec{b}|=46$, then $|\vec{a}|$ is equal to
(A) 24
(B) 42
(C) 22
(D) 26
f. The value of $\int_{0}^{\pi / 2} \sin ^{2} x d x$ is
(A) $\pi / 4$
(B) $\pi / 2$
(C) $\pi / 3$
(D) $\pi / 6$
g. If the roots are 2,3 then complementary function is equal to
(A) $c_{1} e+c_{2} e^{5 x}$
(B) $\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{5 \mathrm{x}}$
(C) $\mathrm{c}_{1} \mathrm{e}^{2 \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{3 \mathrm{x}}$
(D) $\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}_{1}}+\mathrm{c}_{2} \mathrm{e}^{\mathrm{x}_{2}}$
h. The period of the function of $|\cos \mathrm{x}|$ is equal to
(A) $\pi$
(B) $2 \pi$
(C) $3 \pi$
(D) $4 \pi$
i. $\mathrm{L}\{4 \cos 5 \mathrm{t}\}$ is equal to
(A) $\frac{5 s}{s^{2}+16}$
(B) $\frac{2 \mathrm{~s}}{\mathrm{~s}^{2}+16}$
(C) $\frac{4 \mathrm{~s}}{\mathrm{~s}^{2}+16}$
(D) $\frac{4 \mathrm{~s}}{\mathrm{~s}^{2}+25}$
j. $\quad L^{-1}\left\{\frac{5}{s+3}\right\}$ is equal to
(A) $3 \mathrm{e}^{-5 t}$
(B) $5 \mathrm{e}^{3 \mathrm{t}}$
(C) $5 \mathrm{e}^{-3 \mathrm{t}}$
(D) $3 e^{5 t}$


## Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.
Q. 2 a. Verify Rolle's theorem for $f(x)=(x-1)(x-2)(x-3)$
b. Using Maclaurin's series, expand in the power series of $\sin x$.
Q. 3 a. Evaluate $\int_{0}^{\pi} \theta \sin ^{4} \theta \cdot \cos ^{6} \theta \mathrm{~d} \theta$
b. Find the length of the curve $\mathrm{x}=\operatorname{acos}^{3} \theta, \mathrm{y}=\operatorname{asin}^{3} \theta$, in the first quadrant.
Q. 4 a. If $n$ is positive integer, prove that

$$
\begin{equation*}
(\sqrt{3}+i)^{\mathrm{n}}+(\sqrt{3}-\mathrm{i})^{\mathrm{n}}=2^{\mathrm{n}+1}, \cos \frac{\mathrm{n} \pi}{6},(\mathrm{i}=\sqrt{-1}) \tag{8}
\end{equation*}
$$

b. The impedances $\mathrm{z}_{1}=10-\mathrm{j} 60$ and $\mathrm{z}_{2}=10+\mathrm{j} 20$ are connected in parallel across a 200 volts a.c. supply. Calculate
(i) current in each branch and the total current and
(ii) power consumed in each branch.
Q. 5 a. Show that the four points $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.
b. A force given by $3 \hat{i}+2 \hat{j}-4 \hat{k}$ is applied at the point $(1,-1,2)$. Find the moment of the force about the point $(2,-1,3)$.
Q. 6 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\cos 2 x$.
b. The differential equation for a circuit in which self inductance neutralize each other is $L \frac{d^{2} I}{d t^{2}}+\frac{I}{C}=0$. Find the current $I$ as a function of $t$, given that $I_{m}$ is the maximum current and $\mathrm{I}=0$ when $\mathrm{t}=0$.
Q. 7 a. Find the Fourier series representing $f(x)=x, \quad 0<x<2 \pi$ and sketch its graph from $x=-\pi$ to $x=4 \pi$.
b. Expand $f(x)=e^{x}$ in a cosine series over $(0,1)$.
Q. 8 a. Find Laplace transform of $\sin 3 t \cos 5 t$
b. Find Laplace transform of $\frac{1-e^{2 t}}{t}$
Q. 9 a. Find $L^{-1}\left[\frac{s}{s^{4}+s^{2}+1}\right]$
b. Solve the differential equation using Laplace transform method,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+4 \mathrm{y}=\sin \mathrm{t}, \mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0 \tag{8}
\end{equation*}
$$

