Diplete - ET/CS (NEW SCHEME) - Code: DE55/DC55

Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

Max. Marks: 100

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

- a. The value of the $\lim_{x\to 0} \frac{8^x 2^x}{x}$ is
 - (A) log 4

(B) log 2

(**C**) log 6

- **(D)** log 8
- b. If $y = \cos(\sin x)$, then $\frac{dy}{dx}$ is equal to
 - (A) $\cos x \cdot \sin x$

 $(\mathbf{B}) - \sin(\sin x) \cdot \cos x$

(C) $\sin^2 x \cdot \cos x$

- (D) $\cos^2 x \cdot \sin x$
- c. If $z = 1 + i\sqrt{3}$, then $z^2 + 4$ is equal to
 - (A) $z\sqrt{3}$

(B) 3z

(C) 2z

- **(D)** 4z
- d. The principal argument of -2i is equal to
 - **(A)** $-\pi/3$

(B) $-\pi/2$

(C) $\pi/2$

- **(D)** $\pi/3$
- e. If $|\vec{a} + \vec{b}| = 60$, $|\vec{a} \vec{b}| = 40$ and $|\vec{b}| = 46$, then $|\vec{a}|$ is equal to
 - (A) 24

(B) 42

(C) 22

(D) 26

f. The value of $\int_{0}^{\pi/2} \sin^{2} x dx$ is

(A)
$$\pi/4$$

(B)
$$\pi/2$$

(C)
$$\pi/3$$

(D)
$$\pi/6$$

g. If the roots are 2, 3 then complementary function is equal to

(A)
$$c_1e + c_2e^{5x}$$

(B)
$$c_1 e^x + c_2 e^{5x}$$

(C)
$$c_1e^{2x} + c_2e^{3x}$$

(D)
$$c_1 e^{x_1} + c_2 e^{x_2}$$

h. The period of the function of $|\cos x|$ is equal to

$$(A) \pi$$

(B)
$$2\pi$$

(C)
$$3\pi$$

(D)
$$4\pi$$

i. $L{4\cos 5t}$ is equal to

(A)
$$\frac{5s}{s^2 + 16}$$

$$(B) \frac{2s}{s^2 + 16}$$

(C)
$$\frac{4s}{s^2 + 16}$$

(D)
$$\frac{4s}{s^2 + 25}$$

j. $L^{-1}\left\{\frac{5}{s+3}\right\}$ is equal to

(A)
$$3e^{-5t}$$

(B)
$$5e^{3t}$$

(C)
$$5e^{-3t}$$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Verify Rolle's theorem for
$$f(x) = (x-1)(x-2)(x-3)$$

Q.3 a. Evaluate
$$\int_{0}^{\pi} \theta \sin^{4} \theta \cdot \cos^{6} \theta d\theta$$

b. Find the length of the curve
$$x = a\cos^3\theta$$
, $y = a\sin^3\theta$, in the first quadrant. (8)

Q.4 a. If n is positive integer, prove that

$$(\sqrt{3} + i)^n + (\sqrt{3} - i)^n = 2^{n+1}, \cos\frac{n\pi}{6}, (i = \sqrt{-1})$$
 (8)

- b. The impedances $z_1 = 10 j60$ and $z_2 = 10 + j20$ are connected in parallel across a 200 volts a.c. supply. Calculate
 - (i) current in each branch and the total current and
 - (ii) power consumed in each branch. (8)
- Q.5 a. Show that the four points $2\vec{a} + 3\vec{b} \vec{c}$, $\vec{a} 2\vec{b} + 3\vec{c}$, $3\vec{a} + 4\vec{b} 2\vec{c}$ and $\vec{a} 6\vec{b} + 6\vec{c}$ are coplanar. (8)
 - b. A force given by $3\hat{i} + 2\hat{j} 4\hat{k}$ is applied at the point (1,-1,2). Find the moment of the force about the point (2,-1,3). (8)
- **Q.6** a. Solve the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \cos 2x$. (8)
 - b. The differential equation for a circuit in which self inductance neutralize each other is $L \frac{d^2I}{dt^2} + \frac{I}{C} = 0$. Find the current I as a function of t, given that I_m is the maximum current and I = 0 when t = 0. (8)
- Q.7 a. Find the Fourier series representing f(x) = x, $0 < x < 2\pi$ and sketch its graph from $x = -\pi$ to $x = 4\pi$.
 - b. Expand $f(x) = e^x$ in a cosine series over (0,1).
- Q.8 a. Find Laplace transform of sin 3t cos 5t (8)
 - b. Find Laplace transform of $\frac{1-e^{2t}}{t}$ (8)
- **Q.9** a. Find $L^{-1} \left[\frac{s}{s^4 + s^2 + 1} \right]$ (8)
 - b. Solve the differential equation using Laplace transform method,

$$\frac{d^2y}{dt^2} + 4y = \sin t, y(0) = 1, y'(0) = 0$$
(8)