Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

DECEMBER 2010

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of the limit $\operatorname{lt}_{x \rightarrow 0} \frac{8^{x}-2^{x}}{x}$ is equal to
(A) $\log 4$
(B) $\log 2$
(C) $\log 3$
(D) $\log 5$
b. The value of definite integral $\int_{0}^{\pi}|\cos x| d x$ is equal to
(A) 0
(B) 2
(C) 1
(D) ∞
c. The solution of $(1+\cos x) d y=(1-\cos x) d x$ is
(A) $2 \tan x / 2-2 x+c$
(B) $2 \tan x / 2-x / 2+c$
(C) $2 \tan x / 2-x+c$
(D) $2 \tan x / 2+x+c$
d. If $|z+i|=|z-i|$, then the value of z is equal to
(A) 1
(B) 0
(C) ∞
(D) x
e. The power factor is equal to
(A) I.R
(B) $\frac{\mathrm{V}}{\mathrm{R}}$
(C) $\frac{|Z|}{\mathrm{R}}$
(D) $\frac{\mathrm{R}}{|\mathrm{Z}|}$
f. The Laplace transform of $e^{-3 t}$. $(\cos 4 t+3 \sin 4 t)$ is
(A) $\frac{\mathrm{s}+4}{\mathrm{~s}^{2}+2 \mathrm{~s}+4}$
(B) $\frac{\mathrm{s}+12}{\mathrm{~s}^{2}+3 \mathrm{~s}+6}$
(C) $\frac{\mathrm{s}+15}{\mathrm{~s}^{2}+6 \mathrm{~s}+25}$
(D) $\frac{\mathrm{s}+15}{\mathrm{~s}^{2}+6 \mathrm{~s}+15}$
g. The $\mathrm{L}^{-1}\left(\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}-1\right)^{2}}\right)$ is equal to
(A) $\frac{\mathrm{t}}{2} \cosh$
(B) $\frac{\mathrm{t}}{2} \sinh \mathrm{t}$
(C) $2 \mathrm{t} \sinh$
(D) $2 \mathrm{t} \cosh \mathrm{t}$
h. If $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are two vectors such that $|\overrightarrow{\mathrm{a}}|=2,|\overrightarrow{\mathrm{~b}}|=3$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=3$, then the angle between the vectors is equal to
(A) 30°
(B) 45°
(C) 60°
(D) 90°
i. The area of parallelogram. Whose adjacent sides are $\hat{i}-2 \hat{j}+3 \hat{k}$ and $2 \hat{i}+\hat{j}-4 \hat{k}$, is
(A) $5 \sqrt{6}$ sq.unit
(B) $2 \sqrt{3}$ sq.unit
(C) $3 \sqrt{2}$ sq.unit
(D) None of above
j. If the voltage and current of a circuit are given by the complex numbers $70+20 \mathrm{j}$ and $20-6 \mathrm{j}$ respectively then the admittance in the form of complex number is equal to
(A) $3.56+2.23 \mathrm{~J}$
(B) $2.35+1.25 \mathrm{j}$
(C) $1.57+2.56 \mathrm{j}$
(D) $2.94+1.88 \mathrm{j}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Evaluate $\underset{x \rightarrow 0}{ } \operatorname{lt}_{x} \frac{\tan x-\sin x}{x^{3}}$
b. The loop of the curve $a^{2}=x(x-a)^{2}$ revolves about the x-axis. Find the volume of the solid so generated.
Q. 3 a. Separate $\sin ^{-1}(\alpha+i \beta)$ into real and imaginary parts.
b. The forces $2 \hat{i}+7 \hat{j}, 2 \hat{i}-5 \hat{j}+6 \hat{k},-\hat{i}+2 \hat{j}-\hat{k}$ act on a point P whose position vector is $4 \hat{i}-3 \hat{j}-2 \hat{k}$. Find the vector moment of the resultants of three forces acting at P about the point Q, whose position vector is $6 \mathrm{i}+j-3 \mathrm{k}$.
Q. 4 a. A condensor of the capacity c is discharged through an inductance L and a resistance R, in the series and the charge Q at the time t satisfies the equation
$\mathrm{L} \frac{\mathrm{d}^{2} \mathrm{Q}}{\mathrm{dt}^{2}}+\mathrm{R} \frac{\mathrm{dQ}}{\mathrm{dt}}+\frac{\mathrm{Q}}{\mathrm{c}}=0$
given that $\mathrm{L}=0.25 \mathrm{H}, \mathrm{R}=250$ ohms, and $\mathrm{c}=2 \times 10^{-6}$ farad and that when $t=0$, the charge Q is 0.002 coulomb and the current $\frac{d Q}{d t}=0$, obtain the value of Q in the terms of t .
b. Find the Fourier series of the function

$$
\mathrm{f}(\mathrm{t})=\left\{\begin{array}{ccc}
0 & \text { when } & -2<\mathrm{t}<-1 \tag{8}\\
\mathrm{k} & \text { when } & -1<\mathrm{t}<1 \\
0 & \text { when } & 1<\mathrm{t}<2
\end{array}\right.
$$

Q. 5 a. Find the Laplace transform of $\frac{1-\cos 2 t}{t}$.
b. Evaluate $L^{-1}\left[\frac{s+4}{s(s-1)\left(s^{2}+4\right)}\right]$
Q. 6 a. Verify Rolle's Theorem for the function $f(x)=x(x+2) e^{-x / 2}$ in the interval $(-2,0)$
b. Find the Laplace Transform of the periodic function (saw tooth wave)

$$
\begin{equation*}
f(t)=\frac{k t}{t} \text { for } 0<t<T, f(t+T)=f(t) \tag{8}
\end{equation*}
$$

Q. 7 a. Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=5 \sin t$

$$
\begin{equation*}
\text { if } y(0)=y^{\prime}(0)=0 \tag{8}
\end{equation*}
$$

b. Solve the equation $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=\sin 2 x$
Q. 8 a. Find the Fourier series representing,

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\mathrm{x}, \quad 0<\mathrm{x}<2 \pi \tag{8}
\end{equation*}
$$

b. A resistance of 20 ohms, an inductance of 0.2 H and a capacitance of 100 micro farad are connected in series across 220 volts, 50 cycles/sec mains. Determine (i) Impedance (ii) Current (iii) Voltage across L, R and C.
Q. 9 a. Find the area of the triangle formed by the points whose position vectors are $3 \mathrm{i}+\mathrm{j}, 5 \mathrm{i}+2 \mathrm{j}+\mathrm{k}, \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$.
b. Verify Langrage's Mean-value theorem for $f(x)=\log _{\mathrm{e}} \mathrm{x}$ in the interval $[1, \mathrm{e}]$

