Register Number

SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E-CSE Title of the Paper: Discrete Mathematics Sub. Code: 411503-611503 Date: 10/11/2010

Max. Marks: 80 Time: 3 Hours Session: FN

PART - A (10 X 2 = 20)Answer ALL the Questions

- 1. Define functionally complete set of connectives and give an example.
- Write the following sentence in a symbolic form: "Every one who is healthy can do all kinds of work".
- 3. Draw the Hasse diagram of (X, \leq) , where X is the set of positive divisors of 45 and the relation \leq is such that $\leq = \{(x, y); x \in A, y \in A \land (x \text{ divides } y)\}$
- 4. Find the partition A = $\{1,2,3,4,5,6\}$ with minsets generated by B₁ = $\{1,3,5\}$ and B₂ = $\{1,2,3\}$.
- 5. In the group {2,4,6,8} under multiplication modulo 10, what is the identity element?
- 6. Show that the intersection of two normal subgroups is a normal subgroup.
- 7. Give an example of a lattice which is a modular but not a distributive.

- 8. A label identifier, for a computer system consist of one English alphabet in capital letter followed by two non-zero digits. If repetition of digits is allowed, how many label identifiers are possible?
- 9. Define a regular graph.
- 10. Find the minimum height of a 11-vertex binary tree.

PART – B $(5 \times 12 = 60)$ Answer All the Questions

11. (a) Test whether the following formula:
Q ∨ (P Λ ¬Q) ∨ (¬PΛ ¬Q) is a tautology or contradiction without constructing the truth table.
(b) Using rule CP, derive P → (Q→S) from P →(Q→R), Q→(R→S).

(or)

- 12. (a) Obtain the principle conjunctive normal form of $(\neg P \rightarrow R) \land (Q \rightleftharpoons P)$ (b) Prove that $(\exists x) (P(x) \land Q(x)) \Rightarrow (\exists x) P(x) \land (\exists x) Q(x).$
- 13. (a) Let a relation R be defined on the set of all real numbers by 'if x, y are real numbers, xRy ⇔ x-y is a rational number' show that R is an equivalence relation.
 (b) Draw the Hasse diagram of the relation ⊆ on P(A), where A = {a, b, c}

(or)

14. (a) Show that f: R → R defined by f (x) = 2x-3 is a bijection and find its inverse. Compute f⁻¹ of and f of⁻¹
(b) If f : A → B, g : B → C & h : C → D are functions then prove that ho (gof) = (hog) of.

- 15. State and prove Lagrange's Theorem.
- (or) 16. (a) If $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$, find f^{-1} gf and gfg⁻¹ (b) Prove that the cyclic group is abelian
- 17. (a) Solve the recurrence relation a_n 5a_{n-1} + 6a_{n-2} = 0 where a₀ =2 and a₁=5
 (b) Prove by using induction that aⁿ bⁿ is divisible by (a b) for all n∈ N.
 - (or)
- 18. (a) Show that if L is a distributive lattice then for all *a,b,c∈L*, (*a*b*)⊕(*b*c*) ⊕(*c*a*) = (*a⊕b*)*(*b⊕c*)*(*c⊕a*).
 (b) Find the minimum sum for the function. *f*(*a,b,c,d*) = *ab*′*c*′*d*′+*abc*′*d*+*ab*′*cd*+*ab*′*cd*′+*abcd*, by Karnaugh map method.

19. (a) Show that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges. (8)

(b) Write the adjacency matrix of the graph. (4)

20. (a) Verify if G and G_1 are isomorphic

(b) What is the postfix form of $((a+b)\uparrow 3) + ((a-b)/3)$?