SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E – CSE

Title of the paper: Discrete Mathematics

Semester: V Max.Marks: 80 Sub.Code: 411503-511503-611503 Time: 3 Hours Date: 27-04-2009 Session: AN

> PART - A (10 x 2 = 20) Answer All the Questions

- 1. State the truth value of "If tiger have wings then the earth travels round the Sun".
- 2. Symbolise: For every x, there exists a y such that $x^2 + y^2 \ge 100$.
- 3. State Demorgan's law.
- 4. Define Equivalence Relation.
- 5. Define Subgroup.
- 6. Define a Monoid.
- 7. Prove a \cdot (a+b) = a + (a \cdot b) in a Boolean algebra.
- 8. Define a Nand gate.
- 9. Define a Graph.
- 10. Define a Tree.

PART – B $(5 \times 12 = 60)$ Answer All the Questions

11. Construct the truth table for

$$(7P~\Lambda~(7Q~\Lambda~R)~V~(Q~\Lambda~R)~V~(P~\Lambda~R)$$

(or)

12. Obtain the Disjunctive Normal form (DNF) and conjective Normal form (CNF) for

$$[P \rightarrow (Q \land R)] \land (7P \rightarrow 7Q \land 7R)].$$

13. Let R denotes a relation on the set of all Ordered pairs of positive integers by

(x,y) R (u,v) if and only if xv = yu,

Show that R is an equivalence Relation.

(or)

- 14. Let f(x) = x+2, g(x) = x 2 and h(x) = 3x for $x \in R$, the set of real numbers. Find gof, fog, fof, gog, foh, hog, hof and fohog.
- 15. State and Prove Lagrange's Theorem.

(or)

- 16. State and Prove Cayley's Theorem.
- 17. Solve $S(K) 4S(k-1) + 4S(k-2) = 3K + 2^k$, S(0) = 1, S(1) = 1. (or)
- 18. (a) Define Boolean Algebra. Is there a Boolean Algebra with five elements? Justify.
 - (b) Show that $2^n > n^3$ for $n \ge 10$ using induction principle.
- 19. Convert the following tree into a binary tree.

(or) 20. (a) Find the adjacency matrix of the given directed multi graph.

(b) Determine the given pair of graphs is Isomorphic.

