# M.Sc. DEGREE II SEMESTER EXAMINATION IN ENVIRONMENTAL TECHNOLOGY, MAY 2007

# **ENB 2201 CHEMICAL METHODS IN ENVIRONMENTAL ANALYSIS**

Time: 3 Hrs.

Maximum marks: 50

#### PART - A

(Answer ANY FIVE questions. All questions carry EQUAL marks)

 $(5 \times 1 = 10)$ 

I

1. Balance the following nuclear reaction

$$^{238}U$$
  $\rightarrow$   $X + 8\alpha + 6\beta$ 

- 2. Explain the term BOD
- 3. Give an example of natural air pollution
- 4. Define an indicator electrode
- 5. What is the basic principle of atomic emission spectroscopy?
- 6. Define molar absorptivity

## PART - B

(Answer ANY FIVE questions. All questions carry EQUAL marks)

 $(5 \times 3 = 15)$ 

II

- 1. A sample of 100mg of a radioactive nuclide decay to 81.5mg of the same in exactly 7 days. Calculate the decay constant for this disintegration and the half life of the nuclide?
- 2. Explain the principle and methodology involved in the estimation of dissolved oxygen.
- 3. What are the advantages of a potentiometric titration over a direct potentiometric measurement.
- 4. Differentiate nephelometry and turbidimetry with suitable examples.

- 5. Why is atomic emission more sensitive to flame instability than atomic absorption?
- 6. How will you estimate the fluoride content in a water sample?

### PART - C

(Answer ANY FIVE questions. All questions carry EQUAL marks)

 $(5 \times 5 = 25)$ 

- III Describe the principles involved in the working of Scintillation counter. What are the merits of Scintillation counter over GM counter?
- IV Explain the principle of colorimetric determination of nitrate in water
- V Describe the sources of error in the measurement of pH. How are the pH data affected by alkaline error?.
- VI Explain the sampling and analytical techniques involved in the estimation of H<sub>2</sub>S in polluted air.
- VII Explain the principle involved in atomic absorption spectrophotometry and discuss its application to trace metal determination in water.
- VIII Describe the differences between the following
  - a) spectrophotometers and photometers
  - b) monochromators and polychromators
  - c) single-beam and double-beam instruments for absorbance measurements