Total number of printed pages – 7 B. Tech CPEN 5304

Sixth Semester Examination – 2009

FIBRE OPTIC INSTRUMENTATION

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

(Plank's constant = 6.6256 x 10⁻³⁴ J-Sec)

- Answer the following questions: 2×10
 - (a) What is a "direct band gap material"?
 What is the importance of this in fiber optic instrumentation?

P.T.O.

- (b) A light source generating an optical power equal to 1 µ-watt is coupled into an optical fibre with a cross sectional area larger than that of the active area of the light source. Determine the power coupled into the fibre with a fibre acceptance angle of 30°
- (c) What are "Impact Ionization" and "Avalanche Effects"?
- (d) Define "minimum detectable optical power".
 Also list the principal noises associated with photo-detectors those have no internal gain.
- (e) What are "Active Glass Fibres" ? Describe the properties of these fibres.
- (f) Distinguish between "Mie Scattering" and "Rayleigh Scattering".

- (g) What are the factors which optical power launching from source to fibre depends on?
- (h) How are the Fibre Optic Sensors classified?
- (i) Explain "Stokes Fluorescence". Why is it important in fibre optic instrumentation?
- (j) Describe the construction of Fresnel Zone Plate. What will happen if a parallel beam of light is incident on the Zone Plate?
- (a) A double hetero-junction InGaAsP LED emitting at a peak wavelength of 1310 nm has radiative and non-radiative recombination times of 30 and 100 ns respectively.

CPEN 5304 2 Contd.

CPEN 5304

P.T.O.

- The drive current is 40 mA. Calculate the internal power generated in LED. 5
- (b) Write the Laser diode rate equations that govern number of photons generated and number of electrons in the active region. Derive the number of electrons that must be exceeding a threshold value so that number of photon generated increases. 5
- (a) List three basic structures of LASER
 diodes based on optical confinement
 method and draw their radiation patterns.

 Also list three types of LASERs using
 built-in frequency selective reflectors. 5
- (b) Write the condition for the phase of the wave inside the active region at lasing CPEN 5304 4 Contd.

- when an integer number of half wavelength spans the region between the mirrors. 5
- (a) Explain the propagation of ray in step index as well as graded index fibres. Draw ray diagrams whenever necessary.
 - (b) List the effects and causes of the following attenuation mechanisms: 5
 - (i) Absorption
 - (ii) Scattering
 - (iii) Bending Losses.
- 5. (a) A GaAs optical source with a refractive index of 3.6 coupled to a silica fibre that has a refractive index of 1.48. If the fibre end and the source are in close physical contact, calculate the power loss in

CPEN 5304

P.T.O.

		decibels. Suggest a method of reducing this		
		loss.		5
	(b)	Describe various lensing schemes for		
		coup	oling optical power into the fibre	5
6,	(a)	Describe the construction and principle of		
		measurement of Mach-Zehnder interfero-		
		metric sensors.		
	(b)	Write basic principle of the following fibre		
		optic	sensors:	5
		(i)	Fibre Bragg Grating sensor	
		(ii)	Fibre Optic Gyroscope.	
7	(a)	Suggest a method for the following with		
		suitable diagram: 5		
		(i)	Detection of Oil Droplet in water	er .
		(ii)	Detection of liquid level.	
CPEN 5304			6	Contd.

- (b) Explain the phenomena of "constructive interference" and "destructive interference". Draw suitable diagrams and derive the expressions to explain the above phenomenon.
- 8. Write short notes on any two: 5×2
 - (a) Littrow Diffraction Grating
 - (b) Hot body source
 - (c) Optical amplifier
 - (d) Distributed Fibre Optic Sensor.

CPEN 5304

7

- C