
Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

‘C’ Language Aptitude Test Paper
Note : All the programs are tested under Turbo C/C++ compilers.

It is assumed that,
 Programs run under DOS environment,
 The underlying machine is an x86 system,
 Program is compiled using Turbo C/C++ compiler.

The program output may depend on the information based on this assumptions (for example
sizeof(int) == 2 may be assumed).

Predict the output or error(s) for the following:

1. void main()
{

int const * p=5;
printf("%d",++(*p));

}
Answer:

Compiler error: Cannot modify a constant value.
Explanation:

p is a pointer to a "constant integer". But we tried to change the value of the "constant
integer".

2. main()
{

char s[]="man";
int i;
for(i=0;s[i];i++)
printf("\n%c%c%c%c",s[i],*(s+i),*(i+s),i[s]);

}
Answer:

 mmmm
 aaaa
 nnnn

Explanation:
s[i], *(i+s), *(s+i), i[s] are all different ways of expressing the same idea. Generally array

name is the base address for that array. Here s is the base address. i is the index number/displacement from
the base address. So, indirecting it with * is same as s[i]. i[s] may be surprising. But in the case of C it is
same as s[i].

3. main()
{

float me = 1.1;
double you = 1.1;
if(me==you)

printf("I love U");
else

printf("I hate U");
}

Answer:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 1

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

I hate U
Explanation:

For floating point numbers (float, double, long double) the values cannot be predicted
exactly. Depending on the number of bytes, the precession with of the value represented varies. Float
takes 4 bytes and long double takes 10 bytes. So float stores 0.9 with less precision than long double.

Rule of Thumb:
Never compare or at-least be cautious when using floating point numbers with relational

operators (== , >, <, <=, >=,!=) .

4. main()
{
static int var = 5;
printf("%d ",var--);
if(var)

main();
}
Answer:

5 4 3 2 1
 Explanation:

When static storage class is given, it is initialized once. The change in the value of a static
variable is retained even between the function calls. Main is also treated like any other ordinary function,
which can be called recursively.

5. main()
{

 int c[]={2.8,3.4,4,6.7,5};
 int j,*p=c,*q=c;
 for(j=0;j<5;j++) {

printf(" %d ",*c);
 ++q; }
 for(j=0;j<5;j++){

printf(" %d ",*p);
++p; }

}

Answer:
 2 2 2 2 2 2 3 4 6 5
 Explanation:

Initially pointer c is assigned to both p and q. In the first loop, since only q is incremented
and not c , the value 2 will be printed 5 times. In second loop p itself is incremented. So the values 2 3 4 6
5 will be printed.

6. main()
{

extern int i;
i=20;
printf("%d",i);

}

Answer:
Linker Error : Undefined symbol '_i'

Explanation:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 2

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 extern storage class in the following declaration,
 extern int i;
specifies to the compiler that the memory for i is allocated in some other program and that address will be
given to the current program at the time of linking. But linker finds that no other variable of name i is
available in any other program with memory space allocated for it. Hence a linker error has occurred .

7. main()
{

int i=-1,j=-1,k=0,l=2,m;
m=i++&&j++&&k++||l++;
printf("%d %d %d %d %d",i,j,k,l,m);

}
Answer:

 0 0 1 3 1
Explanation :

Logical operations always give a result of 1 or 0 . And also the logical AND (&&) operator
has higher priority over the logical OR (||) operator. So the expression ‘i++ && j++ && k++’ is executed
first. The result of this expression is 0 (-1 && -1 && 0 = 0). Now the expression is 0 || 2 which evaluates
to 1 (because OR operator always gives 1 except for ‘0 || 0’ combination- for which it gives 0). So the
value of m is 1. The values of other variables are also incremented by 1.

8. main()
{

char *p;
printf("%d %d ",sizeof(*p),sizeof(p));

}

Answer:
 1 2

Explanation:
The sizeof() operator gives the number of bytes taken by its operand. P is a character

pointer, which needs one byte for storing its value (a character). Hence sizeof(*p) gives a value of 1. Since
it needs two bytes to store the address of the character pointer sizeof(p) gives 2.

9. main()
{

int i=3;
switch(i)
 {
 default:printf("zero");
 case 1: printf("one");

 break;
 case 2:printf("two");

 break;
 case 3: printf("three");

 break;
 }

}
Answer :

three
Explanation :

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 3

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

The default case can be placed anywhere inside the loop. It is executed only when all other
cases doesn't match.

10. main()
{

 printf("%x",-1<<4);
}

Answer:
fff0

Explanation :
-1 is internally represented as all 1's. When left shifted four times the least significant 4 bits

are filled with 0's.The %x format specifier specifies that the integer value be printed as a hexadecimal
value.

11. main()
{

 char string[]="Hello World";
display(string);

}
void display(char *string)
{

printf("%s",string);
}

 Answer:
Compiler Error : Type mismatch in redeclaration of function display

 Explanation :
In third line, when the function display is encountered, the compiler doesn't know anything

about the function display. It assumes the arguments and return types to be integers, (which is the default
type). When it sees the actual function display, the arguments and type contradicts with what it has
assumed previously. Hence a compile time error occurs.

12. main()
{

int c=- -2;
printf("c=%d",c);

}
Answer:

 c=2;
 Explanation:

Here unary minus (or negation) operator is used twice. Same maths rules applies, ie. minus
* minus= plus.

Note:
However you cannot give like --2. Because -- operator can only be applied to variables as a

decrement operator (eg., i--). 2 is a constant and not a variable.

13. #define int char
main()
{

int i=65;
printf("sizeof(i)=%d",sizeof(i));

}
Answer:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 4

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 sizeof(i)=1
Explanation:

Since the #define replaces the string int by the macro char

14. main()
{

int i=10;
i=!i>14;
Printf ("i=%d",i);

}
Answer:

i=0

 Explanation:
In the expression !i>14 , NOT (!) operator has more precedence than ‘ >’ symbol. ! is a

unary logical operator. !i (!10) is 0 (not of true is false). 0>14 is false (zero).

15. #include<stdio.h>
main()
{

char s[]={'a','b','c','\n','c','\0'};
char *p,*str,*str1;
p=&s[3];
str=p;
str1=s;
printf("%d",++*p + ++*str1-32);

}
Answer:

77
Explanation:
p is pointing to character '\n'. str1 is pointing to character 'a' ++*p. "p is pointing to '\n' and that is

incremented by one." the ASCII value of '\n' is 10, which is then incremented to 11. The value of ++*p is
11. ++*str1, str1 is pointing to 'a' that is incremented by 1 and it becomes 'b'. ASCII value of 'b' is 98.

 Now performing (11 + 98 – 32), we get 77("M");
 So we get the output 77 :: "M" (Ascii is 77).

16. #include<stdio.h>
main()
{

int a[2][2][2] = { {10,2,3,4}, {5,6,7,8} };
int *p,*q;
p=&a[2][2][2];
*q=***a;
printf("%d----%d",*p,*q);

}
Answer:

SomeGarbageValue---1
Explanation:

p=&a[2][2][2] you declare only two 2D arrays, but you are trying to access the third
2D(which you are not declared) it will print garbage values. *q=***a starting address of a is assigned

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 5

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

integer pointer. Now q is pointing to starting address of a. If you print *q, it will print first element of 3D
array.

17. #include<stdio.h>
main()
{

struct xx
{
 int x=3;
 char name[]="hello";
 };
struct xx *s;
printf("%d",s->x);
printf("%s",s->name);

}
Answer:

Compiler Error
Explanation:

You should not initialize variables in declaration

18. #include<stdio.h>
main()
{

struct xx
{

int x;
struct yy
{

char s;
struct xx *p;

};
struct yy *q;

};
}

Answer:
Compiler Error

Explanation:
The structure yy is nested within structure xx. Hence, the elements are of yy are to be

accessed through the instance of structure xx, which needs an instance of yy to be known. If the instance is
created after defining the structure the compiler will not know about the instance relative to xx. Hence for
nested structure yy you have to declare member.

19. main()
{

printf("\nab");
printf("\bsi");
printf("\rha");

}
Answer:

hai
Explanation:

\n - newline

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 6

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

\b - backspace
\r - linefeed

20. main()
{

int i=5;
printf("%d%d%d%d%d%d",i++,i--,++i,--i,i);

}
Answer:

45545
Explanation:

The arguments in a function call are pushed into the stack from left to right. The evaluation
is by popping out from the stack. and the evaluation is from right to left, hence the result.

21. #define square(x) x*x
main()
{

int i;
i = 64/square(4);
printf("%d",i);

}
Answer:

64
Explanation:

the macro call square(4) will substituted by 4*4 so the expression becomes i = 64/4*4 .
Since / and * has equal priority the expression will be evaluated as (64/4)*4 i.e. 16*4 = 64

22. main()

{
char *p="hai friends",*p1;
p1=p;
while(*p!='\0') ++*p++;
printf("%s %s",p,p1);

}
Answer:

ibj!gsjfoet
Explanation:

++*p++ will be parse in the given order
 *p that is value at the location currently pointed by p will be taken
 ++*p the retrieved value will be incremented
 when ; is encountered the location will be incremented that is p++ will be executed
Hence, in the while loop initial value pointed by p is ‘h’, which is changed to ‘i’ by executing ++*p and
pointer moves to point, ‘a’ which is similarly changed to ‘b’ and so on. Similarly blank space is converted
to ‘!’. Thus, we obtain value in p becomes “ibj!gsjfoet” and since p reaches ‘\0’ and p1 points to p thus
p1doesnot print anything.

23. #include <stdio.h>
#define a 10
main()
{

#define a 50
printf("%d",a);

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 7

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

}
Answer:

50
Explanation:

The preprocessor directives can be redefined anywhere in the program. So the most recently
assigned value will be taken.

24. #define clrscr() 100
main()
{

clrscr();
printf("%d\n",clrscr());

}
Answer:

100
Explanation:

Preprocessor executes as a seperate pass before the execution of the compiler. So textual
replacement of clrscr() to 100 occurs.The input program to compiler looks like this :

main()
{
 100;
 printf("%d\n",100);
}

Note:
100; is an executable statement but with no action. So it doesn't give any problem

25. main()
{

41printf("%p",main);
}8Answer:

Some address will be printed.
Explanation:
 Function names are just addresses (just like array names are addresses).

main() is also a function. So the address of function main will be printed. %p in printf specifies that the
argument is an address. They are printed as hexadecimal numbers.

27) main()
{
clrscr();
}
clrscr();

Answer:
No output/error

Explanation:
The first clrscr() occurs inside a function. So it becomes a function call. In the second
clrscr(); is a function declaration (because it is not inside any function).

28) enum colors {BLACK,BLUE,GREEN}
 main()
{

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 8

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 printf("%d..%d..%d",BLACK,BLUE,GREEN);

 return(1);
}
Answer:

0..1..2
Explanation:

enum assigns numbers starting from 0, if not explicitly defined.

29) void main()
{
 char far *farther,*farthest;

 printf("%d..%d",sizeof(farther),sizeof(farthest));

 }
Answer:

4..2
Explanation:
 the second pointer is of char type and not a far pointer

30) main()
{
 int i=400,j=300;
 printf("%d..%d");
}
Answer:

400..300
Explanation:

printf takes the values of the first two assignments of the program. Any number of printf's
may be given. All of them take only the first two values. If more number of assignments
given in the program,then printf will take garbage values.

31) main()
{
 char *p;
 p="Hello";
 printf("%c\n",*&*p);
}
Answer:

H
Explanation:

* is a dereference operator & is a reference operator. They can be applied any number of
times provided it is meaningful. Here p points to the first character in the string "Hello". *p
dereferences it and so its value is H. Again & references it to an address and * dereferences
it to the value H.

32) main()
{
 int i=1;
 while (i<=5)
 {

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 9

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 printf("%d",i);
 if (i>2)

 goto here;
 i++;
 }
}
fun()
{
 here:
 printf("PP");
}
Answer:

Compiler error: Undefined label 'here' in function main
Explanation:

Labels have functions scope, in other words the scope of the labels is limited to functions.
The label 'here' is available in function fun() Hence it is not visible in function main.

33) main()
{
 static char names[5][20]={"pascal","ada","cobol","fortran","perl"};
 int i;
 char *t;
 t=names[3];
 names[3]=names[4];
 names[4]=t;
 for (i=0;i<=4;i++)
 printf("%s",names[i]);
}
Answer:

Compiler error: Lvalue required in function main
Explanation:

Array names are pointer constants. So it cannot be modified.

34) void main()
{

int i=5;
printf("%d",i++ + ++i);

}
Answer:

Output Cannot be predicted exactly.
Explanation:

Side effects are involved in the evaluation of i

35) void main()
{

int i=5;
printf("%d",i+++++i);

}
Answer:

Compiler Error
Explanation:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 10

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

The expression i+++++i is parsed as i ++ ++ + i which is an illegal combination of
operators.

36) #include<stdio.h>

main()
{
int i=1,j=2;
switch(i)
 {
 case 1: printf("GOOD");

 break;
 case j: printf("BAD");
 break;
 }
}
Answer:

Compiler Error: Constant expression required in function main.
Explanation:

The case statement can have only constant expressions (this implies that we cannot use
variable names directly so an error).

Note:
Enumerated types can be used in case statements.

37) main()
{
int i;
printf("%d",scanf("%d",&i)); // value 10 is given as input here
}
Answer:

1
Explanation:

Scanf returns number of items successfully read and not 1/0. Here 10 is given as input
which should have been scanned successfully. So number of items read is 1.

38) #define f(g,g2) g##g2
main()
{
int var12=100;
printf("%d",f(var,12));
}
Answer:

100

39) main()
{
int i=0;

for(;i++;printf("%d",i)) ;

printf("%d",i);
}
Answer:

1

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 11

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

Explanation:
before entering into the for loop the checking condition is "evaluated". Here it evaluates to 0
(false) and comes out of the loop, and i is incremented (note the semicolon after the for
loop).

40) #include<stdio.h>
main()
{
 char s[]={'a','b','c','\n','c','\0'};
 char *p,*str,*str1;
 p=&s[3];
 str=p;
 str1=s;
 printf("%d",++*p + ++*str1-32);
}
Answer:

M
Explanation:

p is pointing to character '\n'.str1 is pointing to character 'a' ++*p meAnswer:"p is pointing
to '\n' and that is incremented by one." the ASCII value of '\n' is 10. then it is incremented to
11. the value of ++*p is 11. ++*str1 meAnswer:"str1 is pointing to 'a' that is incremented by
1 and it becomes 'b'. ASCII value of 'b' is 98. both 11 and 98 is added and result is
subtracted from 32.
i.e. (11+98-32)=77("M");

41) #include<stdio.h>
main()
{
 struct xx
 {
 int x=3;
 char name[]="hello";
 };
struct xx *s=malloc(sizeof(struct xx));
printf("%d",s->x);
printf("%s",s->name);
}
Answer:

Compiler Error
Explanation:

Initialization should not be done for structure members inside the structure declaration

42) #include<stdio.h>
main()
{
struct xx
 {
 int x;
 struct yy
 {
 char s;
 struct xx *p;

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 12

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 };
 struct yy *q;
 };
 }

Answer:
Compiler Error

Explanation:
in the end of nested structure yy a member have to be declared.

43) main()
{
 extern int i;
 i=20;
 printf("%d",sizeof(i));
}
Answer:

Linker error: undefined symbol '_i'.
Explanation:

extern declaration specifies that the variable i is defined somewhere else. The compiler
passes the external variable to be resolved by the linker. So compiler doesn't find an error.
During linking the linker searches for the definition of i. Since it is not found the linker
flags an error.

44) main()
{
printf("%d", out);
}
int out=100;
Answer:

Compiler error: undefined symbol out in function main.
Explanation:

The rule is that a variable is available for use from the point of declaration. Even though a is
a global variable, it is not available for main. Hence an error.

45) main()
{
 extern out;
 printf("%d", out);
}
 int out=100;
Answer:

100
Explanation:

This is the correct way of writing the previous program.

46) main()
{
 show();
}
void show()
{
 printf("I'm the greatest");

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 13

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

}
Answer:

Compier error: Type mismatch in redeclaration of show.
Explanation:

When the compiler sees the function show it doesn't know anything about it. So the default
return type (ie, int) is assumed. But when compiler sees the actual definition of show
mismatch occurs since it is declared as void. Hence the error.
The solutions are as follows:

1. declare void show() in main() .
2. define show() before main().
3. declare extern void show() before the use of show().

47) main()

{
 int a[2][3][2] = {{{2,4},{7,8},{3,4}},{{2,2},{2,3},{3,4}}};
 printf(“%u %u %u %d \n”,a,*a,**a,***a);
 printf(“%u %u %u %d \n”,a+1,*a+1,**a+1,***a+1);

 }
Answer:

100, 100, 100, 2
114, 104, 102, 3

Explanation:
The given array is a 3-D one. It can also be viewed as a 1-D array.

2 4 7 8 3 4 2 2 2 3 3 4

 100 102 104 106 108 110 112 114 116 118 120 122

thus, for the first printf statement a, *a, **a give address of first element . since the
indirection ***a gives the value. Hence, the first line of the output.
for the second printf a+1 increases in the third dimension thus points to value at 114, *a+1
increments in second dimension thus points to 104, **a +1 increments the first dimension
thus points to 102 and ***a+1 first gets the value at first location and then increments it by
1. Hence, the output.

48) main()
{
 int a[] = {10,20,30,40,50},j,*p;
 for(j=0; j<5; j++)
 {

printf(“%d” ,*a);
a++;

 }
 p = a;
 for(j=0; j<5; j++)
 {

printf(“%d ” ,*p);
p++;

 }
 }
Answer:

Compiler error: lvalue required.

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 14

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

Explanation:
Error is in line with statement a++. The operand must be an lvalue and may be of any of
scalar type for the any operator, array name only when subscripted is an lvalue. Simply
array name is a non-modifiable lvalue.

**49) main()
{
 static int a[] = {0,1,2,3,4};
 int *p[] = {a,a+1,a+2,a+3,a+4};
 int **ptr = p;
 ptr++;
 printf(“\n %d %d %d”, ptr-p, *ptr-a, **ptr);
 *ptr++;
 printf(“\n %d %d %d”, ptr-p, *ptr-a, **ptr);
 *++ptr;
 printf(“\n %d %d %d”, ptr-p, *ptr-a, **ptr);
 ++*ptr;
 printf(“\n %d %d %d”, ptr-p, *ptr-a, **ptr);
}
Answer:

111
222
333
344

Explanation:
Let us consider the array and the two pointers with some address

a
0 1 2 3 4

 100 102 104 106 108
 p

100 102 104 106 108
 1000 1002 1004 1006 1008

 ptr
1000
2000

After execution of the instruction ptr++ value in ptr becomes 1002, if scaling factor for
integer is 2 bytes. Now ptr – p is value in ptr – starting location of array p, (1002 – 1000) /
(scaling factor) = 1, *ptr – a = value at address pointed by ptr – starting value of array a,
1002 has a value 102 so the value is (102 – 100)/(scaling factor) = 1, **ptr is the value
stored in the location pointed by the pointer of ptr = value pointed by value pointed by
1002 = value pointed by 102 = 1. Hence the output of the firs printf is 1, 1, 1.
After execution of *ptr++ increments value of the value in ptr by scaling factor, so it
becomes1004. Hence, the outputs for the second printf are ptr – p = 2, *ptr – a = 2, **ptr =
2.
After execution of *++ptr increments value of the value in ptr by scaling factor, so it
becomes1004. Hence, the outputs for the third printf are ptr – p = 3, *ptr – a = 3, **ptr = 3.
After execution of ++*ptr value in ptr remains the same, the value pointed by the value is
incremented by the scaling factor. So the value in array p at location 1006 changes from 106
10 108,. Hence, the outputs for the fourth printf are ptr – p = 1006 – 1000 = 3, *ptr – a =
108 – 100 = 4, **ptr = 4.

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 15

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

50) main()
{
 char *q;
 int j;
 for (j=0; j<3; j++) scanf(“%s” ,(q+j));
 for (j=0; j<3; j++) printf(“%c” ,*(q+j));
 for (j=0; j<3; j++) printf(“%s” ,(q+j));
}
Explanation:

Here we have only one pointer to type char and since we take input in the same pointer thus
we keep writing over in the same location, each time shifting the pointer value by 1.
Suppose the inputs are MOUSE, TRACK and VIRTUAL. Then for the first input suppose
the pointer starts at location 100 then the input one is stored as
M O U S E \0
When the second input is given the pointer is incremented as j value becomes 1, so the input
is filled in memory starting from 101.
M T R A C K \0
The third input starts filling from the location 102
M T V I R T U A L \0
This is the final value stored .
The first printf prints the values at the position q, q+1 and q+2 = M T V
The second printf prints three strings starting from locations q, q+1, q+2
 i.e MTVIRTUAL, TVIRTUAL and VIRTUAL.

51) main()

{
 void *vp;
 char ch = ‘g’, *cp = “goofy”;
 int j = 20;
 vp = &ch;
 printf(“%c”, *(char *)vp);
 vp = &j;
 printf(“%d”,*(int *)vp);
 vp = cp;
 printf(“%s”,(char *)vp + 3);
}
Answer:

g20fy
Explanation:

Since a void pointer is used it can be type casted to any other type pointer. vp = &ch stores
address of char ch and the next statement prints the value stored in vp after type casting it to
the proper data type pointer. the output is ‘g’. Similarly the output from second printf is
‘20’. The third printf statement type casts it to print the string from the 4 th value hence the
output is ‘fy’.

52) main ()
{
 static char *s[] = {“black”, “white”, “yellow”, “violet”};
 char **ptr[] = {s+3, s+2, s+1, s}, ***p;
 p = ptr;

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 16

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 **++p;
 printf(“%s”,*--*++p + 3);
}
Answer:

ck
Explanation:

In this problem we have an array of char pointers pointing to start of 4 strings. Then we
have ptr which is a pointer to a pointer of type char and a variable p which is a pointer to a
pointer to a pointer of type char. p hold the initial value of ptr, i.e. p = s+3. The next
statement increment value in p by 1 , thus now value of p = s+2. In the printf statement the
expression is evaluated *++p causes gets value s+1 then the pre decrement is executed and
we get s+1 – 1 = s . the indirection operator now gets the value from the array of s and adds
3 to the starting address. The string is printed starting from this position. Thus, the output is
‘ck’.

53) main()
{
 int i, n;
 char *x = “girl”;
 n = strlen(x);
 *x = x[n];
 for(i=0; i<n; ++i)
 {

printf(“%s\n”,x);
x++;

 }
 }
Answer:

(blank space)
irl
rl
l

Explanation:
Here a string (a pointer to char) is initialized with a value “girl”. The strlen function returns
the length of the string, thus n has a value 4. The next statement assigns value at the nth
location (‘\0’) to the first location. Now the string becomes “\0irl” . Now the printf
statement prints the string after each iteration it increments it starting position. Loop starts
from 0 to 4. The first time x[0] = ‘\0’ hence it prints nothing and pointer value is
incremented. The second time it prints from x[1] i.e “irl” and the third time it prints “rl” and
the last time it prints “l” and the loop terminates.

54) int i,j;
for(i=0;i<=10;i++)
{
j+=5;
assert(i<5);
}
Answer:

Runtime error: Abnormal program termination.
assert failed (i<5), <file name>,<line number>

Explanation:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 17

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

asserts are used during debugging to make sure that certain conditions are satisfied. If
assertion fails, the program will terminate reporting the same. After debugging use,

#undef NDEBUG
and this will disable all the assertions from the source code. Assertion
is a good debugging tool to make use of.

55) main()

{
int i=-1;
+i;
printf("i = %d, +i = %d \n",i,+i);
}
Answer:

 i = -1, +i = -1
Explanation:

Unary + is the only dummy operator in C. Where-ever it comes you can just ignore it just
because it has no effect in the expressions (hence the name dummy operator).

56) What are the files which are automatically opened when a C file is executed?
Answer:

stdin, stdout, stderr (standard input,standard output,standard error).

57) what will be the position of the file marker?
a: fseek(ptr,0,SEEK_SET);
b: fseek(ptr,0,SEEK_CUR);

Answer :
a: The SEEK_SET sets the file position marker to the starting of the file.
b: The SEEK_CUR sets the file position marker to the current position
of the file.

58) main()
{
char name[10],s[12];
scanf(" \"%[^\"]\"",s);
}
How scanf will execute?
Answer:

First it checks for the leading white space and discards it.Then it matches with a quotation
mark and then it reads all character upto another quotation mark.

59) What is the problem with the following code segment?
while ((fgets(receiving array,50,file_ptr)) != EOF)

;
Answer & Explanation:

fgets returns a pointer. So the correct end of file check is checking for != NULL.

60) main()
{
main();
}
Answer:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 18

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 Runtime error : Stack overflow.
Explanation:

main function calls itself again and again. Each time the function is called its return address
is stored in the call stack. Since there is no condition to terminate the function call, the call
stack overflows at runtime. So it terminates the program and results in an error.

61) main()
{
char *cptr,c;
void *vptr,v;
c=10; v=0;
cptr=&c; vptr=&v;
printf("%c%v",c,v);
}
Answer:

Compiler error (at line number 4): size of v is Unknown.
Explanation:

You can create a variable of type void * but not of type void, since void is an empty type. In
the second line you are creating variable vptr of type void * and v of type void hence an
error.

62) main()
{
char *str1="abcd";
char str2[]="abcd";
printf("%d %d %d",sizeof(str1),sizeof(str2),sizeof("abcd"));
}
Answer:

2 5 5
Explanation:

In first sizeof, str1 is a character pointer so it gives you the size of the pointer variable. In
second sizeof the name str2 indicates the name of the array whose size is 5 (including the
'\0' termination character). The third sizeof is similar to the second one.

63) main()
{
char not;
not=!2;
printf("%d",not);
}
Answer:

0
Explanation:

! is a logical operator. In C the value 0 is considered to be the boolean value FALSE, and
any non-zero value is considered to be the boolean value TRUE. Here 2 is a non-zero value
so TRUE. !TRUE is FALSE (0) so it prints 0.

64) #define FALSE -1
#define TRUE 1
#define NULL 0
main() {
 if(NULL)

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 19

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

puts("NULL");
 else if(FALSE)

puts("TRUE");
 else

puts("FALSE");
 }
Answer:

TRUE
Explanation:

The input program to the compiler after processing by the preprocessor is,
main(){
if(0)

puts("NULL");
else if(-1)

puts("TRUE");
else

puts("FALSE");
}
Preprocessor doesn't replace the values given inside the double quotes. The check by if
condition is boolean value false so it goes to else. In second if -1 is boolean value true hence
"TRUE" is printed.

65) main()
{
int k=1;
printf("%d==1 is ""%s",k,k==1?"TRUE":"FALSE");
}
Answer:

1==1 is TRUE
Explanation:

When two strings are placed together (or separated by white-space) they are concatenated
(this is called as "stringization" operation). So the string is as if it is given as "%d==1 is
%s". The conditional operator(?:) evaluates to "TRUE".

66) main()
{
int y;
scanf("%d",&y); // input given is 2000
if((y%4==0 && y%100 != 0) || y%100 == 0)
 printf("%d is a leap year");
else
 printf("%d is not a leap year");
}
Answer:

2000 is a leap year
Explanation:

An ordinary program to check if leap year or not.

67) #define max 5
#define int arr1[max]
main()
{

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 20

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

typedef char arr2[max];
arr1 list={0,1,2,3,4};
arr2 name="name";
printf("%d %s",list[0],name);
}
Answer:

Compiler error (in the line arr1 list = {0,1,2,3,4})
Explanation:

arr2 is declared of type array of size 5 of characters. So it can be used to declare the variable
name of the type arr2. But it is not the case of arr1. Hence an error.

Rule of Thumb:
#defines are used for textual replacement whereas typedefs are used for declaring new
types.

68) int i=10;
main()
{

 extern int i;
 {

 int i=20;
{
 const volatile unsigned i=30;
 printf("%d",i);
}

 printf("%d",i);
 }
printf("%d",i);
}
Answer:

30,20,10
Explanation:

'{' introduces new block and thus new scope. In the innermost block i is declared as,
const volatile unsigned

which is a valid declaration. i is assumed of type int. So printf prints 30. In the next block, i
has value 20 and so printf prints 20. In the outermost block, i is declared as extern, so no
storage space is allocated for it. After compilation is over the linker resolves it to global
variable i (since it is the only variable visible there). So it prints i's value as 10.

69) main()
{
 int *j;
 {
 int i=10;
 j=&i;
 }
 printf("%d",*j);
}
Answer:

10
Explanation:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 21

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

The variable i is a block level variable and the visibility is inside that block only. But the
lifetime of i is lifetime of the function so it lives upto the exit of main function. Since the i
is still allocated space, *j prints the value stored in i since j points i.

70) main()
{
int i=-1;
-i;
printf("i = %d, -i = %d \n",i,-i);
}
Answer:

i = -1, -i = 1
Explanation:

-i is executed and this execution doesn't affect the value of i. In printf first you just print the
value of i. After that the value of the expression -i = -(-1) is printed.

71) #include<stdio.h>
main()
 {
 const int i=4;
 float j;
 j = ++i;
 printf("%d %f", i,++j);
 }
Answer:

Compiler error
 Explanation:

i is a constant. you cannot change the value of constant

72) #include<stdio.h>
main()
{
 int a[2][2][2] = { {10,2,3,4}, {5,6,7,8} };
 int *p,*q;
 p=&a[2][2][2];
 *q=***a;
 printf("%d..%d",*p,*q);
}
Answer:

garbagevalue..1
Explanation:

p=&a[2][2][2] you declare only two 2D arrays. but you are trying to access the third
2D(which you are not declared) it will print garbage values. *q=***a starting address of a is
assigned integer pointer. now q is pointing to starting address of a.if you print *q
meAnswer:it will print first element of 3D array.

73) #include<stdio.h>
main()
 {
 register i=5;
 char j[]= "hello";
 printf("%s %d",j,i);

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 22

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

}
Answer:

hello 5
Explanation:

if you declare i as register compiler will treat it as ordinary integer and it will take integer
value. i value may be stored either in register or in memory.

74) main()
{
 int i=5,j=6,z;
 printf("%d",i+++j);
 }
Answer:

11
Explanation:

the expression i+++j is treated as (i++ + j)

76) struct aaa{
struct aaa *prev;
int i;
struct aaa *next;
};

main()
{
 struct aaa abc,def,ghi,jkl;
 int x=100;
 abc.i=0;abc.prev=&jkl;
 abc.next=&def;
 def.i=1;def.prev=&abc;def.next=&ghi;
 ghi.i=2;ghi.prev=&def;
 ghi.next=&jkl;
 jkl.i=3;jkl.prev=&ghi;jkl.next=&abc;
 x=abc.next->next->prev->next->i;
 printf("%d",x);
}
Answer:

2
Explanation:

above all statements form a double circular linked list;
abc.next->next->prev->next->i
this one points to "ghi" node the value of at particular node is 2.

77) struct point
 {
 int x;
 int y;
 };
struct point origin,*pp;
main()
{
pp=&origin;
printf("origin is(%d%d)\n",(*pp).x,(*pp).y);

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 23

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

printf("origin is (%d%d)\n",pp->x,pp->y);
}

Answer:
origin is(0,0)
origin is(0,0)

Explanation:
pp is a pointer to structure. we can access the elements of the structure either with arrow
mark or with indirection operator.

Note:
Since structure point is globally declared x & y are initialized as zeroes

78) main()
{
 int i=_l_abc(10);

 printf("%d\n",--i);
}
int _l_abc(int i)
{
 return(i++);
}
Answer:

9
Explanation:

return(i++) it will first return i and then increments. i.e. 10 will be returned.

79) main()
{
 char *p;
 int *q;
 long *r;
 p=q=r=0;
 p++;
 q++;
 r++;
 printf("%p...%p...%p",p,q,r);
}
Answer:

0001...0002...0004
Explanation:

++ operator when applied to pointers increments address according to their corresponding
data-types.

 80) main()
{
 char c=' ',x,convert(z);
 getc(c);
 if((c>='a') && (c<='z'))
 x=convert(c);
 printf("%c",x);
}
convert(z)

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 24

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

{
 return z-32;
}
Answer:

Compiler error
Explanation:

declaration of convert and format of getc() are wrong.

81) main(int argc, char **argv)
{
 printf("enter the character");
 getchar();
 sum(argv[1],argv[2]);
}
sum(num1,num2)
int num1,num2;
{
 return num1+num2;
}
Answer:

Compiler error.
Explanation:

argv[1] & argv[2] are strings. They are passed to the function sum without converting it to
integer values.

82) # include <stdio.h>
int one_d[]={1,2,3};
main()
{
 int *ptr;
 ptr=one_d;
 ptr+=3;
 printf("%d",*ptr);
}
Answer:

garbage value
Explanation:

ptr pointer is pointing to out of the array range of one_d.

83) # include<stdio.h>
aaa() {
 printf("hi");
 }
bbb(){
 printf("hello");
 }
ccc(){
 printf("bye");
 }
main()
{
 int (*ptr[3])();

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 25

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 ptr[0]=aaa;
 ptr[1]=bbb;
 ptr[2]=ccc;
 ptr[2]();
}
Answer:

bye
Explanation:

ptr is array of pointers to functions of return type int.ptr[0] is assigned to address of the
function aaa. Similarly ptr[1] and ptr[2] for bbb and ccc respectively. ptr[2]() is in effect of
writing ccc(), since ptr[2] points to ccc.

85) #include<stdio.h>
main()
{
FILE *ptr;
char i;
ptr=fopen("zzz.c","r");
while((i=fgetch(ptr))!=EOF)

printf("%c",i);
}
Answer:

contents of zzz.c followed by an infinite loop
Explanation:

The condition is checked against EOF, it should be checked against NULL.

86) main()
{
 int i =0;j=0;
 if(i && j++)
 printf("%d..%d",i++,j);
printf("%d..%d,i,j);
}
Answer:

0..0
Explanation:

The value of i is 0. Since this information is enough to determine the truth value of the
boolean expression. So the statement following the if statement is not executed. The values
of i and j remain unchanged and get printed.

87) main()

{
 int i;
 i = abc();
 printf("%d",i);
}
abc()
{
 _AX = 1000;
}
Answer:

1000

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 26

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

Explanation:
Normally the return value from the function is through the information from the
accumulator. Here _AH is the pseudo global variable denoting the accumulator. Hence, the
value of the accumulator is set 1000 so the function returns value 1000.

88) int i;
 main(){

int t;
for (t=4;scanf("%d",&i)-t;printf("%d\n",i))
 printf("%d--",t--);

 }
// If the inputs are 0,1,2,3 find the o/p
Answer:
 4--0

3--1
2--2

Explanation:
Let us assume some x= scanf("%d",&i)-t the values during execution

 will be,
 t i x
 4 0 -4
 3 1 -2
 2 2 0

89) main(){

 int a= 0;int b = 20;char x =1;char y =10;
 if(a,b,x,y)
 printf("hello");
 }
Answer:

hello
Explanation:

The comma operator has associativity from left to right. Only the rightmost value is
returned and the other values are evaluated and ignored. Thus the value of last variable y is
returned to check in if. Since it is a non zero value if becomes true so, "hello" will be
printed.

90) main(){
 unsigned int i;
 for(i=1;i>-2;i--)

 printf("c aptitude");
}
Explanation:

i is an unsigned integer. It is compared with a signed value. Since the both types doesn't
match, signed is promoted to unsigned value. The unsigned equivalent of -2 is a huge value
so condition becomes false and control comes out of the loop.

91) In the following pgm add a stmt in the function fun such that the address of
'a' gets stored in 'j'.
main(){
 int * j;
 void fun(int **);

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 27

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

 fun(&j);
 }
 void fun(int **k) {
 int a =0;
 /* add a stmt here*/
 }
Answer:

*k = &a
Explanation:

 The argument of the function is a pointer to a pointer.

92) What are the following notations of defining functions known as?

i. int abc(int a,float b)
 {
 /* some code */

 }
ii. int abc(a,b)
 int a; float b;

 {
 /* some code*/
 }

Answer:
i. ANSI C notation
ii. Kernighan & Ritche notation

93) main()
{
char *p;
p="%d\n";

 p++;
 p++;
 printf(p-2,300);

}
Answer:

300
Explanation:

The pointer points to % since it is incremented twice and again decremented by 2, it points
to '%d\n' and 300 is printed.

94) main(){
 char a[100];
 a[0]='a';a[1]]='b';a[2]='c';a[4]='d';
 abc(a);
}
abc(char a[]){
 a++;

 printf("%c",*a);
 a++;
 printf("%c",*a);
}
Explanation:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 28

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

The base address is modified only in function and as a result a points to 'b' then after
incrementing to 'c' so bc will be printed.

95) func(a,b)

int a,b;
{

 return(a= (a==b));
}
main()
{
int process(),func();
printf("The value of process is %d !\n ",process(func,3,6));
}
process(pf,val1,val2)
int (*pf) ();
int val1,val2;
{
return((*pf) (val1,val2));
 }
Answer:

The value if process is 0 !
Explanation:

The function 'process' has 3 parameters - 1, a pointer to another function 2 and 3, integers.
When this function is invoked from main, the following substitutions for formal parameters
take place: func for pf, 3 for val1 and 6 for val2. This function returns the result of the
operation performed by the function 'func'. The function func has two integer parameters.
The formal parameters are substituted as 3 for a and 6 for b. since 3 is not equal to 6, a==b
returns 0. therefore the function returns 0 which in turn is returned by the function 'process'.

96) void main()
{

static int i=5;
if(--i){

main();
printf("%d ",i);

}
}
Answer:

 0 0 0 0
Explanation:

The variable "I" is declared as static, hence memory for I will be allocated for only once, as
it encounters the statement. The function main() will be called recursively unless I becomes equal
to 0, and since main() is recursively called, so the value of static I ie., 0 will be printed every time
the control is returned.

97) void main()
{

int k=ret(sizeof(float));
printf("\n here value is %d",++k);

}
int ret(int ret)
{

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 29

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

ret += 2.5;
return(ret);

}
Answer:

 Here value is 7
Explanation:

The int ret(int ret), ie., the function name and the argument name can be the same.
Firstly, the function ret() is called in which the sizeof(float) ie., 4 is passed, after the first

expression the value in ret will be 6, as ret is integer hence the value stored in ret will have implicit
type conversion from float to int. The ret is returned in main() it is printed after and preincrement.

98) void main()
{

char a[]="12345\0";
int i=strlen(a);
printf("here in 3 %d\n",++i);

}
Answer:

here in 3 6
Explanation:

The char array 'a' will hold the initialized string, whose length will be counted from 0 till the
null character. Hence the 'I' will hold the value equal to 5, after the pre-increment in the printf
statement, the 6 will be printed.

99) void main()
{

unsigned giveit=-1;
int gotit;
printf("%u ",++giveit);
printf("%u \n",gotit=--giveit);

}
Answer:

 0 65535
Explanation:

100) void main()
{

int i;
char a[]="\0";
if(printf("%s\n",a))

printf("Ok here \n");
else

printf("Forget it\n");
}
Answer:

 Ok here
Explanation:

Printf will return how many characters does it print. Hence printing a null character
returns 1 which makes the if statement true, thus "Ok here" is printed.

101) void main()

{

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 30

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

void *v;
int integer=2;
int *i=&integer;
v=i;
printf("%d",(int*)*v);

}
Answer:

Compiler Error. We cannot apply indirection on type void*.
Explanation:

Void pointer is a generic pointer type. No pointer arithmetic can be done on it. Void
pointers are normally used for,
1. Passing generic pointers to functions and returning such pointers.
2. As a intermediate pointer type.
3. Used when the exact pointer type will be known at a later point of time.

102) void main()
{

int i=i++,j=j++,k=k++;
printf(“%d%d%d”,i,j,k);

}
Answer:

Garbage values.
Explanation:

An identifier is available to use in program code from the point of its declaration.
So expressions such as i = i++ are valid statements. The i, j and k are automatic variables
and so they contain some garbage value. Garbage in is garbage out (GIGO).

103) void main()
{

static int i=i++, j=j++, k=k++;
printf(“i = %d j = %d k = %d”, i, j, k);

}
Answer:

i = 1 j = 1 k = 1
Explanation:

Since static variables are initialized to zero by default.

104) void main()
{

while(1){
if(printf("%d",printf("%d")))

break;
else

continue;
}

}
Answer:

Garbage values
Explanation:

The inner printf executes first to print some garbage value. The printf returns no of
characters printed and this value also cannot be predicted. Still the outer printf prints

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 31

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

something and so returns a non-zero value. So it encounters the break statement and comes
out of the while statement.

104) main()
{

unsigned int i=10;
while(i-->=0)

printf("%u ",i);

}
Answer:

10 9 8 7 6 5 4 3 2 1 0 65535 65534…..
Explanation:

Since i is an unsigned integer it can never become negative. So the expression i-- >=0 will
always be true, leading to an infinite loop.

105) #include<conio.h>
main()
{

int x,y=2,z,a;
if(x=y%2) z=2;
a=2;
printf("%d %d ",z,x);

}
 Answer:

Garbage-value 0
Explanation:

The value of y%2 is 0. This value is assigned to x. The condition reduces to if (x) or in other
words if(0) and so z goes uninitialized.

Thumb Rule: Check all control paths to write bug free code.

106) main()
{

int a[10];
printf("%d",*a+1-*a+3);

}
Answer:

4
Explanation:

*a and -*a cancels out. The result is as simple as 1 + 3 = 4 !

107) #define prod(a,b) a*b
main()
{

int x=3,y=4;
printf("%d",prod(x+2,y-1));

}
Answer:

10
Explanation:

The macro expands and evaluates to as:
x+2*y-1 => x+(2*y)-1 => 10

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 32

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

108) main()
{

unsigned int i=65000;
while(i++!=0);
printf("%d",i);

}
Answer:

 1
Explanation:

Note the semicolon after the while statement. When the value of i becomes 0 it comes out of
while loop. Due to post-increment on i the value of i while printing is 1.

109) main()

{
int i=0;
while(+(+i--)!=0)

i-=i++;
printf("%d",i);

}
Answer:

-1
Explanation:

Unary + is the only dummy operator in C. So it has no effect on the expression and now the
while loop is, while(i--!=0) which is false and so breaks out of while loop. The value –1 is
printed due to the post-decrement operator.

113) main()

{
float f=5,g=10;
enum{i=10,j=20,k=50};
printf("%d\n",++k);
printf("%f\n",f<<2);
printf("%lf\n",f%g);
printf("%lf\n",fmod(f,g));

}
Answer:

Line no 5: Error: Lvalue required
Line no 6: Cannot apply leftshift to float
Line no 7: Cannot apply mod to float

Explanation:
Enumeration constants cannot be modified, so you cannot apply ++.
Bit-wise operators and % operators cannot be applied on float values.
fmod() is to find the modulus values for floats as % operator is for ints.

110) main()
{

int i=10;
void pascal f(int,int,int);
f(i++,i++,i++);
printf(" %d",i);

}

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 33

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

void pascal f(integer :i,integer:j,integer :k)
{

write(i,j,k);
}
Answer:

Compiler error: unknown type integer
Compiler error: undeclared function write

Explanation:
Pascal keyword doesn’t mean that pascal code can be used. It means that the function

follows Pascal argument passing mechanism in calling the functions.

111) void pascal f(int i,int j,int k)
{

printf(“%d %d %d”,i, j, k);
}
void cdecl f(int i,int j,int k)
{

printf(“%d %d %d”,i, j, k);
}
main()
{

int i=10;
f(i++,i++,i++);
printf(" %d\n",i);
i=10;
f(i++,i++,i++);
printf(" %d",i);

}
Answer:

10 11 12 13
12 11 10 13

Explanation:
Pascal argument passing mechanism forces the arguments to be called from left to right.

cdecl is the normal C argument passing mechanism where the arguments are passed from right to
left.

112). What is the output of the program given below

main()
 {
 signed char i=0;
 for(;i>=0;i++) ;
 printf("%d\n",i);
 }
Answer

-128
Explanation

Notice the semicolon at the end of the for loop. THe initial value of the i is set to 0.
The inner loop executes to increment the value from 0 to 127 (the positive range of
char) and then it rotates to the negative value of -128. The condition in the for loop
fails and so comes out of the for loop. It prints the current value of i that is -128.

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 34

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

113) main()
 {
 unsigned char i=0;
 for(;i>=0;i++) ;
 printf("%d\n",i);
 }
Answer
infinite loop
Explanation
The difference between the previous question and this one is that the char is declared to be

unsigned. So the i++ can never yield negative value and i>=0 never becomes false so that it can
come out of the for loop.

114) main()
 {

 char i=0;
 for(;i>=0;i++) ;
 printf("%d\n",i);

 }
Answer:

Behavior is implementation dependent.
Explanation:

The detail if the char is signed/unsigned by default is implementation dependent. If
the implementation treats the char to be signed by default the program will print –128 and
terminate. On the other hand if it considers char to be unsigned by default, it goes to infinite
loop.
Rule:

You can write programs that have implementation dependent behavior. But dont
write programs that depend on such behavior.

115) Is the following statement a declaration/definition. Find what does it mean?
int (*x)[10];
Answer

Definition.
x is a pointer to array of(size 10) integers.

Apply clock-wise rule to find the meaning of this definition.

116). What is the output for the program given below

 typedef enum errorType{warning, error, exception,}error;
 main()
 {
 error g1;
 g1=1;
 printf("%d",g1);
 }
Answer

Compiler error: Multiple declaration for error
Explanation

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 35

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

The name error is used in the two meanings. One means that it is a enumerator
constant with value 1. The another use is that it is a type name (due to typedef) for enum
errorType. Given a situation the compiler cannot distinguish the meaning of error to know
in what sense the error is used:

error g1;
g1=error;

// which error it refers in each case?
When the compiler can distinguish between usages then it will not issue error (in

pure technical terms, names can only be overloaded in different namespaces).
Note: the extra comma in the declaration,
enum errorType{warning, error, exception,}

is not an error. An extra comma is valid and is provided just for programmer’s convenience.

117) typedef struct error{int warning, error, exception;}error;

 main()
 {
 error g1;
 g1.error =1;
 printf("%d",g1.error);
 }

Answer
1

Explanation
The three usages of name errors can be distinguishable by the compiler at any instance, so

valid (they are in different namespaces).
Typedef struct error{int warning, error, exception;}error;

This error can be used only by preceding the error by struct kayword as in:
struct error someError;
typedef struct error{int warning, error, exception;}error;

This can be used only after . (dot) or -> (arrow) operator preceded by the variable name as in :
g1.error =1;

 printf("%d",g1.error);
 typedef struct error{int warning, error, exception;}error;
This can be used to define variables without using the preceding struct keyword as in:

error g1;
Since the compiler can perfectly distinguish between these three usages, it is perfectly legal and
valid.

Note
This code is given here to just explain the concept behind. In real programming don’t use

such overloading of names. It reduces the readability of the code. Possible doesn’t mean that we
should use it!

118) #ifdef something

int some=0;
#endif

main()
{

int thing = 0;

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 36

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

printf("%d %d\n", some ,thing);
}

Answer:
Compiler error : undefined symbol some

Explanation:
This is a very simple example for conditional compilation. The name something is
not already known to the compiler making the declaration
int some = 0;
effectively removed from the source code.

119) #if something == 0
int some=0;
#endif

main()
{

int thing = 0;
printf("%d %d\n", some ,thing);

}

Answer
0 0

Explanation
This code is to show that preprocessor expressions are not the same as the ordinary
expressions. If a name is not known the preprocessor treats it to be equal to zero.

120). What is the output for the following program

 main()
 {

 int arr2D[3][3];
 printf("%d\n", ((arr2D==* arr2D)&&(* arr2D == arr2D[0])));

 }
Answer

1
Explanation

This is due to the close relation between the arrays and pointers. N dimensional
arrays are made up of (N-1) dimensional arrays.
arr2D is made up of a 3 single arrays that contains 3 integers each .

The name arr2D refers to the beginning of all the 3 arrays. *arr2D refers to the start
of the first 1D array (of 3 integers) that is the same address as arr2D. So the
expression (arr2D == *arr2D) is true (1).

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 37

arr2D
arr2D[1]

arr2D[2]

arr2D[3]

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

Similarly, *arr2D is nothing but *(arr2D + 0), adding a zero doesn’t change the
value/meaning. Again arr2D[0] is the another way of telling *(arr2D + 0). So the
expression (*(arr2D + 0) == arr2D[0]) is true (1).
Since both parts of the expression evaluates to true the result is true(1) and the same
is printed.

121) void main()
 {

if(~0 == (unsigned int)-1)
printf(“You can answer this if you know how values are represented in memory”);

 }
 Answer

You can answer this if you know how values are represented in memory
Explanation

~ (tilde operator or bit-wise negation operator) operates on 0 to produce all ones to
fill the space for an integer. –1 is represented in unsigned value as all 1’s and so both
are equal.

122) int swap(int *a,int *b)
{
 *a=*a+*b;*b=*a-*b;*a=*a-*b;
}
main()
{

int x=10,y=20;
swap(&x,&y);
printf("x= %d y = %d\n",x,y);

}
Answer

x = 20 y = 10
Explanation

This is one way of swapping two values. Simple checking will help understand this.

123) main()
{
char *p = “ayqm”;
printf(“%c”,++*(p++));
}
Answer:

b

124) main()
{

 int i=5;
 printf("%d",++i++);

}
Answer:

Compiler error: Lvalue required in function main
Explanation:

++i yields an rvalue. For postfix ++ to operate an lvalue is required.

125) main()

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 38

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

{
char *p = “ayqm”;
char c;
c = ++*p++;
printf(“%c”,c);

}
Answer:

b
Explanation:

There is no difference between the expression ++*(p++) and ++*p++. Parenthesis
just works as a visual clue for the reader to see which expression is first evaluated.

126)
int aaa() {printf(“Hi”);}
int bbb(){printf(“hello”);}
iny ccc(){printf(“bye”);}

main()
{
int (* ptr[3]) ();
ptr[0] = aaa;
ptr[1] = bbb;
ptr[2] =ccc;
ptr[2]();

}
Answer:

 bye
Explanation:

int (* ptr[3])() says that ptr is an array of pointers to functions that takes no arguments and
returns the type int. By the assignment ptr[0] = aaa; it means that the first function pointer in
the array is initialized with the address of the function aaa. Similarly, the other two array
elements also get initialized with the addresses of the functions bbb and ccc. Since ptr[2]
contains the address of the function ccc, the call to the function ptr[2]() is same as calling
ccc(). So it results in printing "bye".

127)
main()
{
int i=5;
printf(“%d”,i=++i ==6);
}

Answer:
1

Explanation:
The expression can be treated as i = (++i==6), because == is of higher precedence than =
operator. In the inner expression, ++i is equal to 6 yielding true(1). Hence the result.

128) main()
{

 char p[]="%d\n";
p[1] = 'c';

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 39

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

printf(p,65);
}
Answer:

A
Explanation:

Due to the assignment p[1] = ‘c’ the string becomes, “%c\n”. Since this string becomes the
format string for printf and ASCII value of 65 is ‘A’, the same gets printed.

129) void (* abc(int, void (*def) ())) ();

Answer::
 abc is a ptr to a function which takes 2 parameters .(a). an integer variable.(b). a ptrto
a funtion which returns void. the return type of the function is void.

Explanation:
Apply the clock-wise rule to find the result.

130) main()
{
while (strcmp(“some”,”some\0”))
printf(“Strings are not equal\n”);
}
Answer:

No output
Explanation:

Ending the string constant with \0 explicitly makes no difference. So “some” and “some\0”
are equivalent. So, strcmp returns 0 (false) hence breaking out of the while loop.

131) main()
{

char str1[] = {‘s’,’o’,’m’,’e’};
char str2[] = {‘s’,’o’,’m’,’e’,’\0’};
while (strcmp(str1,str2))
printf(“Strings are not equal\n”);

}
Answer:

“Strings are not equal”
“Strings are not equal”
….

Explanation:
If a string constant is initialized explicitly with characters, ‘\0’ is not appended
automatically to the string. Since str1 doesn’t have null termination, it treats whatever the
values that are in the following positions as part of the string until it randomly reaches a
‘\0’. So str1 and str2 are not the same, hence the result.

132) main()

{
int i = 3;
for (;i++=0;) printf(“%d”,i);

}

Answer:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 40

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

Compiler Error: Lvalue required.
Explanation:

As we know that increment operators return rvalues and hence it cannot appear on
the left hand side of an assignment operation.

133) void main()

{
int *mptr, *cptr;
mptr = (int*)malloc(sizeof(int));
printf(“%d”,*mptr);
int *cptr = (int*)calloc(sizeof(int),1);
printf(“%d”,*cptr);

}
Answer:

garbage-value 0
Explanation:

The memory space allocated by malloc is uninitialized, whereas calloc returns the allocated
memory space initialized to zeros.

134) void main()
{

static int i;
while(i<=10)
(i>2)?i++:i--;
printf(“%d”, i);

}
Answer:

32767
Explanation:

Since i is static it is initialized to 0. Inside the while loop the conditional operator evaluates
to false, executing i--. This continues till the integer value rotates to positive value (32767).
The while condition becomes false and hence, comes out of the while loop, printing the i
value.

135) main()
{

int i=10,j=20;
j = i, j?(i,j)?i:j:j;
printf("%d %d",i,j);

}

Answer:
10 10

Explanation:
The Ternary operator (? :) is equivalent for if-then-else statement. So the question can be

written as:
if(i,j)

 {
if(i,j)
 j = i;
else
 j = j;

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 41

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

}
 else

j = j;

136) 1. const char *a;
2. char* const a;
3. char const *a;
-Differentiate the above declarations.

Answer:
1. 'const' applies to char * rather than 'a' (pointer to a constant char)

*a='F' : illegal
a="Hi" : legal

2. 'const' applies to 'a' rather than to the value of a (constant pointer to char)
*a='F' : legal
a="Hi" : illegal

3. Same as 1.

137) main()
{

int i=5,j=10;
i=i&=j&&10;
printf("%d %d",i,j);

}

Answer:
1 10

Explanation:
The expression can be written as i=(i&=(j&&10)); The inner expression (j&&10) evaluates
to 1 because j==10. i is 5. i = 5&1 is 1. Hence the result.

138) main()
{

int i=4,j=7;
j = j || i++ && printf("YOU CAN");
printf("%d %d", i, j);

}

Answer:
4 1

Explanation:
The boolean expression needs to be evaluated only till the truth value of the expression is
not known. j is not equal to zero itself means that the expression’s truth value is 1. Because
it is followed by || and true || (anything) => true where (anything) will not be evaluated. So
the remaining expression is not evaluated and so the value of i remains the same.
Similarly when && operator is involved in an expression, when any of the operands
become false, the whole expression’s truth value becomes false and hence the remaining
expression will not be evaluated.
false && (anything) => false where (anything) will not be evaluated.

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 42

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

139) main()
{

register int a=2;
printf("Address of a = %d",&a);
printf("Value of a = %d",a);

}
Answer:

Compier Error: '&' on register variable
Rule to Remember:

 & (address of) operator cannot be applied on register variables.

140) main()
{

float i=1.5;
switch(i)
{

case 1: printf("1");
case 2: printf("2");
default : printf("0");

}
}
Answer:

Compiler Error: switch expression not integral
Explanation:

Switch statements can be applied only to integral types.

141) main()
{

extern i;
printf("%d\n",i);
{

int i=20;
printf("%d\n",i);

}
}
Answer:

Linker Error : Unresolved external symbol i
Explanation:

The identifier i is available in the inner block and so using extern has no use in resolving it.

142) main()
{

int a=2,*f1,*f2;
f1=f2=&a;
*f2+=*f2+=a+=2.5;
printf("\n%d %d %d",a,*f1,*f2);

}
Answer:

16 16 16
Explanation:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 43

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

f1 and f2 both refer to the same memory location a. So changes through f1 and f2 ultimately
affects only the value of a.

143) main()
{

char *p="GOOD";
char a[]="GOOD";
printf("\n sizeof(p) = %d, sizeof(*p) = %d, strlen(p) = %d", sizeof(p), sizeof(*p), strlen(p));
printf("\n sizeof(a) = %d, strlen(a) = %d", sizeof(a), strlen(a));

}
Answer:

sizeof(p) = 2, sizeof(*p) = 1, strlen(p) = 4
sizeof(a) = 5, strlen(a) = 4

Explanation:
sizeof(p) => sizeof(char*) => 2
sizeof(*p) => sizeof(char) => 1
Similarly,
sizeof(a) => size of the character array => 5
When sizeof operator is applied to an array it returns the sizeof the array and it is not the
same as the sizeof the pointer variable. Here the sizeof(a) where a is the character array and
the size of the array is 5 because the space necessary for the terminating NULL character
should also be taken into account.

144) #define DIM(array, type) sizeof(array)/sizeof(type)
main()
{

int arr[10];
printf(“The dimension of the array is %d”, DIM(arr, int));

}
Answer:

10
Explanation:

The size of integer array of 10 elements is 10 * sizeof(int). The macro expands to
sizeof(arr)/sizeof(int) => 10 * sizeof(int) / sizeof(int) => 10.

145) int DIM(int array[])
{
return sizeof(array)/sizeof(int);
}
main()
{

int arr[10];
printf(“The dimension of the array is %d”, DIM(arr));

}
Answer:

1
Explanation:

Arrays cannot be passed to functions as arguments and only the pointers can be passed. So
the argument is equivalent to int * array (this is one of the very few places where [] and *
usage are equivalent). The return statement becomes, sizeof(int *)/ sizeof(int) that happens
to be equal in this case.

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 44

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

146) main()
{

static int a[3][3]={1,2,3,4,5,6,7,8,9};
int i,j;
static *p[]={a,a+1,a+2};
for(i=0;i<3;i++)
{

for(j=0;j<3;j++)
printf("%d\t%d\t%d\t%d\n",*(*(p+i)+j),
((j+p)+i),*(*(i+p)+j),*(*(p+j)+i));

}
}
Answer:

1 1 1 1
2 4 2 4
3 7 3 7
4 2 4 2
5 5 5 5
6 8 6 8
7 3 7 3
8 6 8 6
9 9 9 9

Explanation:
((p+i)+j) is equivalent to p[i][j].

147) main()
{

void swap();
int x=10,y=8;
swap(&x,&y);
printf("x=%d y=%d",x,y);

}
void swap(int *a, int *b)
{
 *a ^= *b, *b ^= *a, *a ^= *b;
}
Answer:

x=10 y=8
Explanation:

Using ^ like this is a way to swap two variables without using a temporary variable and that
too in a single statement.
Inside main(), void swap(); means that swap is a function that may take any number of
arguments (not no arguments) and returns nothing. So this doesn’t issue a compiler error by
the call swap(&x,&y); that has two arguments.
This convention is historically due to pre-ANSI style (referred to as Kernighan and Ritchie
style) style of function declaration. In that style, the swap function will be defined as
follows,

void swap()
int *a, int *b
{
 *a ^= *b, *b ^= *a, *a ^= *b;
}

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 45

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

where the arguments follow the (). So naturally the declaration for swap will look like, void
swap() which means the swap can take any number of arguments.

148) main()
{

int i = 257;
int *iPtr = &i;
printf("%d %d", *((char*)iPtr), *((char*)iPtr+1));

}
Answer:

1 1
Explanation:

The integer value 257 is stored in the memory as, 00000001 00000001, so the individual
bytes are taken by casting it to char * and get printed.

149) main()
{

int i = 258;
int *iPtr = &i;
printf("%d %d", *((char*)iPtr), *((char*)iPtr+1));

}
Answer:

2 1
Explanation:

The integer value 257 can be represented in binary as, 00000001 00000001. Remember that
the INTEL machines are ‘small-endian’ machines. Small-endian means that the lower order
bytes are stored in the higher memory addresses and the higher order bytes are stored in
lower addresses. The integer value 258 is stored in memory as: 00000001 00000010.

150) main()
{

int i=300;
char *ptr = &i;
*++ptr=2;
printf("%d",i);

}
Answer:

556
Explanation:

The integer value 300 in binary notation is: 00000001 00101100. It is stored in memory
(small-endian) as: 00101100 00000001. Result of the expression *++ptr = 2 makes the
memory representation as: 00101100 00000010. So the integer corresponding to it is
00000010 00101100 => 556.

151) #include <stdio.h>
main()
{

char * str = "hello";
char * ptr = str;
char least = 127;
while (*ptr++)

 least = (*ptr<least) ?*ptr :least;

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 46

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

printf("%d",least);
}
Answer:

0
Explanation:

After ‘ptr’ reaches the end of the string the value pointed by ‘str’ is ‘\0’. So the value of ‘str’
is less than that of ‘least’. So the value of ‘least’ finally is 0.

152) Declare an array of N pointers to functions returning pointers to functions returning pointers to
characters?
Answer:

(char*(*)()) (*ptr[N])();

153) main()
{

struct student
{

char name[30];
struct date dob;

}stud;
struct date
 {
 int day,month,year;
 };
 scanf("%s%d%d%d", stud.rollno, &student.dob.day, &student.dob.month,
&student.dob.year);

}
Answer:

Compiler Error: Undefined structure date
Explanation:

Inside the struct definition of ‘student’ the member of type struct date is given. The
compiler doesn’t have the definition of date structure (forward reference is not allowed in
C in this case) so it issues an error.

154) main()
{

struct date;
struct student

{
char name[30];
struct date dob;

}stud;
struct date

 {
 int day,month,year;
 };
scanf("%s%d%d%d", stud.rollno, &student.dob.day, &student.dob.month,
&student.dob.year);

}
Answer:

Compiler Error: Undefined structure date
Explanation:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 47

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

Only declaration of struct date is available inside the structure definition of ‘student’ but to
have a variable of type struct date the definition of the structure is required.

155) There were 10 records stored in “somefile.dat” but the following program printed 11 names. What
went wrong?
void main()
{

struct student
{
char name[30], rollno[6];
}stud;
FILE *fp = fopen(“somefile.dat”,”r”);
while(!feof(fp))
 {

 fread(&stud, sizeof(stud), 1 , fp);
puts(stud.name);

}
}
Explanation:

fread reads 10 records and prints the names successfully. It will return EOF only
when fread tries to read another record and fails reading EOF (and returning EOF).
So it prints the last record again. After this only the condition feof(fp) becomes
false, hence comes out of the while loop.

156) Is there any difference between the two declarations,
1. int foo(int *arr[]) and
2. int foo(int *arr[2])
Answer:

No
Explanation:

Functions can only pass pointers and not arrays. The numbers that are allowed inside the []
is just for more readability. So there is no difference between the two declarations.

157) What is the subtle error in the following code segment?
void fun(int n, int arr[])
{

int *p=0;
int i=0;
while(i++<n)

p = &arr[i];
*p = 0;

}
Answer & Explanation:

If the body of the loop never executes p is assigned no address. So p remains NULL
where *p =0 may result in problem (may rise to runtime error “NULL pointer
assignment” and terminate the program).

158) What is wrong with the following code?
int *foo()
{

int *s = malloc(sizeof(int)100);

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 48

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

assert(s != NULL);
return s;

}
Answer & Explanation:

assert macro should be used for debugging and finding out bugs. The check s != NULL is
for error/exception handling and for that assert shouldn’t be used. A plain if and the
corresponding remedy statement has to be given.

159) What is the hidden bug with the following statement?
assert(val++ != 0);

Answer & Explanation:
Assert macro is used for debugging and removed in release version. In assert, the experssion
involves side-effects. So the behavior of the code becomes different in case of debug
version and the release version thus leading to a subtle bug.

Rule to Remember:
Don’t use expressions that have side-effects in assert statements.

160) void main()
{
int *i = 0x400; // i points to the address 400
*i = 0; // set the value of memory location pointed by i;
}
Answer:

Undefined behavior
Explanation:

The second statement results in undefined behavior because it points to some location
whose value may not be available for modification. This type of pointer in which the non-
availability of the implementation of the referenced location is known as 'incomplete type'.

161) #define assert(cond) if(!(cond)) \
 (fprintf(stderr, "assertion failed: %s, file %s, line %d \n",#cond,\
 __FILE__,__LINE__), abort())

void main()
{
int i = 10;
if(i==0)
 assert(i < 100);
else
 printf("This statement becomes else for if in assert macro");
}
Answer:

No output
Explanation:
The else part in which the printf is there becomes the else for if in the assert macro. Hence nothing
is printed.
The solution is to use conditional operator instead of if statement,
#define assert(cond) ((cond)?(0): (fprintf (stderr, "assertion failed: \ %s, file %s, line %d \n",#cond,
__FILE__,__LINE__), abort()))

Note:

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 49

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

However this problem of “matching with nearest else” cannot be solved by the usual
method of placing the if statement inside a block like this,
#define assert(cond) { \
if(!(cond)) \
 (fprintf(stderr, "assertion failed: %s, file %s, line %d \n",#cond,\
 __FILE__,__LINE__), abort()) \
}

162) Is the following code legal?
struct a
 {

int x;
 struct a b;

 }
Answer:

No
Explanation:

Is it not legal for a structure to contain a member that is of the same
type as in this case. Because this will cause the structure declaration to be recursive without
end.

163) Is the following code legal?
struct a
 {

int x;
 struct a *b;
 }
Answer:

Yes.
Explanation:

*b is a pointer to type struct a and so is legal. The compiler knows, the size of the pointer to
a structure even before the size of the structure
is determined(as you know the pointer to any type is of same size). This type of structures is
known as ‘self-referencing’ structure.

164) Is the following code legal?
typedef struct a
 {

int x;
 aType *b;

 }aType
Answer:

No
Explanation:

The typename aType is not known at the point of declaring the structure (forward references
are not made for typedefs).

165) Is the following code legal?
typedef struct a aType;
struct a
{

int x;

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 50

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

aType *b;
};
Answer:

Yes
Explanation:

The typename aType is known at the point of declaring the structure, because it is already
typedefined.

166) Is the following code legal?
void main()
{

typedef struct a aType;
aType someVariable;
struct a

{
int x;
 aType *b;

 };
}
Answer:

No
Explanation:

When the declaration,
typedef struct a aType;
is encountered body of struct a is not known. This is known as ‘incomplete types’.

167) void main()

{
printf(“sizeof (void *) = %d \n“, sizeof(void *));
printf(“sizeof (int *) = %d \n”, sizeof(int *));
printf(“sizeof (double *) = %d \n”, sizeof(double *));
printf(“sizeof(struct unknown *) = %d \n”, sizeof(struct unknown *));
}
Answer :

sizeof (void *) = 2
sizeof (int *) = 2
sizeof (double *) = 2
sizeof(struct unknown *) = 2

Explanation:
The pointer to any type is of same size.

168) char inputString[100] = {0};
To get string input from the keyboard which one of the following is better?

1) gets(inputString)
2) fgets(inputString, sizeof(inputString), fp)

Answer & Explanation:
The second one is better because gets(inputString) doesn't know the size of the string passed
and so, if a very big input (here, more than 100 chars) the charactes will be written past the
input string. When fgets is used with stdin performs the same operation as gets but is safe.

169) Which version do you prefer of the following two,
1) printf(“%s”,str); // or the more curt one

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 51

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

2) printf(str);
Answer & Explanation:

Prefer the first one. If the str contains any format characters like %d then it will result in a
subtle bug.

170) void main()
{

int i=10, j=2;
int *ip= &i, *jp = &j;
int k = *ip/*jp;
printf(“%d”,k);

}
Answer:

Compiler Error: “Unexpected end of file in comment started in line 5”.
Explanation:

The programmer intended to divide two integers, but by the “maximum munch”
rule, the compiler treats the operator sequence / and * as /* which happens to be the
starting of comment. To force what is intended by the programmer,

int k = *ip/ *jp;
// give space explicity separating / and *
//or
int k = *ip/(*jp);
// put braces to force the intention

will solve the problem.

171) void main()
{
char ch;
for(ch=0;ch<=127;ch++)
printf(“%c %d \n“, ch, ch);
}
Answer:

Implementaion dependent
Explanation:

The char type may be signed or unsigned by default. If it is signed then ch++ is executed
after ch reaches 127 and rotates back to -128. Thus ch is always smaller than 127.

172) Is this code legal?
int *ptr;
ptr = (int *) 0x400;
Answer:

Yes
Explanation:

The pointer ptr will point at the integer in the memory location 0x400.

173) main()
{

char a[4]="HELLO";
printf("%s",a);

}
Answer:

Compiler error: Too many initializers

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 52

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

Explanation:
The array a is of size 4 but the string constant requires 6 bytes to get stored.

174) main()
{

char a[4]="HELL";
printf("%s",a);

}
Answer:

HELL%@!~@!@???@~~!
Explanation:

The character array has the memory just enough to hold the string “HELL” and doesnt have
enough space to store the terminating null character. So it prints the HELL correctly and
continues to print garbage values till it accidentally comes across a NULL character.

175) main()
{

int a=10,*j;
void *k;
j=k=&a;

 j++;
k++;

 printf("\n %u %u ",j,k);
}
Answer:

Compiler error: Cannot increment a void pointer
Explanation:

Void pointers are generic pointers and they can be used only when the type is not known
and as an intermediate address storage type. No pointer arithmetic can be done on it and you
cannot apply indirection operator (*) on void pointers.

176) main()
{

extern int i;
{ int i=20;
 {
 const volatile unsigned i=30; printf("%d",i);
 }
 printf("%d",i);
}
 printf("%d",i);
}

int i;

177) Printf can be implemented by using __________ list.
Answer:

Variable length argument lists
178) char *someFun()

{
char *temp = “string constant";
return temp;
}

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 53

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

Visit http://www.placementpapers.net/
::: Original Website For Placement Papers. :::

int main()
{
puts(someFun());
}

Answer:
string constant

Explanation:
The program suffers no problem and gives the output correctly because the character constants are

stored in code/data area and not allocated in stack, so this doesn’t lead to dangling pointers.

179) char *someFun1()
{
char temp[] = “string";
return temp;
}
char *someFun2()
{
char temp[] = {‘s’, ‘t’,’r’,’i’,’n’,’g’};
return temp;
}
int main()
{
puts(someFun1());
puts(someFun2());
}

Answer:
Garbage values.

Explanation:
Both the functions suffer from the problem of dangling pointers. In someFun1() temp is a character

array and so the space for it is allocated in heap and is initialized with character string “string”. This is
created dynamically as the function is called, so is also deleted dynamically on exiting the function so the
string data is not available in the calling function main() leading to print some garbage values. The
function someFun2() also suffers from the same problem but the problem can be easily identified in this
case.

Visit http://www.placementpapers.net/jobs
::: Latest Fresher Jobs ::: 54

http://www.placementpapers.net/
http://www.placementpapers.net/jobs

	M
	O
	U

	M
	T
	R
	A
	C
	K
	\0
	M
	T
	V
	I
	R
	T
	U
	A
	L

