CS/B.Tecl	h(EIE)/SEM-3/EE-301(EI)/200
Invigilator's Signature :	
Roll No.:	
140116	• • • • • • • • • • • • • • • • • • • •
Name :	

9-10 2009

CIRCUIT THEORY & NETWORKS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- If the voltage across a given capacitor is increased, the i) amount of stored charge
 - a) increases
- decreases b)
- remains constant
- d) is exactly doubled.
- ii) A practical voltage source consists of
 - an ideal voltage source in series with an internal a) resistance
 - b) an ideal voltage source in parallel with an internal. resistance
 - c) both (a) & (b) are correct
 - none of these. d)

33306

Turn over

iii) Determine the current I in the circuit shown is figure :

a) 2.5 A

b) 1A

c) 3.5 A

- d) 4.5 A.
- iv) A 1 kHz sinusoidal volatage is applied to an RL circuit What is the frequency of the resulting current?
 - a) 1 kHz

- b) 0.1 kHz
- c) 100 kHz
- d) 2 kHz.
- v) A series circuit consisting of two elements has the following current & applied voltage:

$$i = 4 \cos (2000 t + 11.32^{\circ}) A$$

$$v = 200 \sin (2000 t + 50^{\circ}) V$$

The circuit elements are

- a) resistance & capacitance
- b) capacitance & inductance
- c) inductance & resistance
- d) both resistances.
- vi) In a certain RL circuit, $V_R = 2 \text{ V & } V_L = 3 \text{V}$.

What is the magnitude of the total voltage?

a) 2 V

b) 3 V

c) 5 V

- d) 3.61 V.
- vii) Maximum power transfer occurs at
 - a) 100% efficiency
- b) 50% efficiency
- c) 25% efficiency
- d) 75% efficiency.

- viii) A source has an emf of 10V and impedance of $500 + j100\Omega$. The amount of maximum power transferred to the load will be
 - a) 0.5 mW
- b) 0.05 mW

c) 0.05 W

- d) 0.5 W.
- ix) Transient current in an RLC circuit is oscillatory when
 - a) $R = 2\sqrt{L/C}$
- b) R = 0
- c) $R > 2\sqrt{L/C}$
- d) $R < 2\sqrt{L/C}$.
- x) When a series RL circuit is connected to a voltage V at t = 0, the current passing through the inductor L at t = 0 is
 - a) $\frac{V}{R}$

b) infinite

c) zero

- d) $\frac{V}{L}$
- xi) The current in the neutral wire of a balanced threephase, four-wire star-connected load is given by
 - a) zero
 - b) $\sqrt{3}$ times the current in each phase
 - c) 3 times the current in each phase
 - d) the current in each phase.
- xii) A two port network is simply a network inside a black box & the network has only
 - a) two terminals
 - b) two pairs of accessible terminals
 - c) two pairs of ports
 - d) 4 pairs of ports.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

 Determine the voltage V which causes the current I₁ to be zero in the circuit shown Use mesh analysis.

3. A series cricuit consisting of two pure elements has the following current & voltage:

$$v = 100 \sin (2000 t + 50^{\circ}) V$$

$$i = 20 \cos (2000 t + 20^{\circ}) A$$

Find the element in the circuit.

- 4. A three phase balanced delta-connected load with line voltage of 200 V, has line currents as $I_1 = 10 \angle 90^\circ$, $I_2 = 10 \angle -150^\circ$ & $I_3 = 10 \angle -30^\circ$.
 - a) What is the phase sequence?
 - b) What are the impedances?

5. For the circuit shown in figure, find the complete expression for the current when the switch is closed at t = 0:

 Find the Norton's equivalent circuit across terminal AB for the circuit shown.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. a) The circuit shown in figure consists of series R - L elements. The sine wave is applied to the circuit when the switch S is closed at t = 0. Determine the current i(t)

b) Find the Laplace transform of the waveform shown:

8. a) For the parallel circuit shown in figure. Find the magnitude of current in each. Branch & the total current. What is the phase angle between the applied voltage & current?

- b) Two impedances $Z_1 = 20 + j \cdot 10 & Z_2 = 10 j \cdot 30$ are connected in parallel & this combination is connected in series with $Z_3 = 30 + j \cdot X$. Find the value of X which will produce resonance. 9 + 6
- a) Find Z-parameters of the network shown in figure.
 Hence find the ABCD parameters for the same network.

33306

b) Calculate the effective inductance of the circuit shown in figure

10 + 5

10. a) Determine the load resistance to receive maximum power from the source. Also find the maximum power delivered to the load in the circuit shown.

b) Determine the output voltage $V_{\rm out}$ in the circuit shown.

33306

7

[Turn over

- 11. a) A three phase, balanced delta connected load of $(4+j8)\Omega$ is connected across a 400 V, 3 ϕ balanced supply. Determine the phase currents & line currents. Assume the phase sequence to be RYB. Also calculate the power drawn by the load.
 - b) Calculate the total power input & readings of the two wattmeters connected to measure power in a three phase balanced load if the reactive power input is 15 kVAR & load p.f. is 0.8.