Total No. of Questions-12]
[Total No. of Printed Pages-8+2
[3762]-601
S.E. (Comp.) (I Sem.) EXAMINATION, 2010 DISCRETE STRUCTURE (2003 COURSE)

Time : Three Hours
Maximum Ma Es: 100
N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 (or Q. No. 4, Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q 11 or Q. No. 12 from Section II.
(ii) Answers to the two Sections should written in separate answer-books.
(iii) Neat diagrams must be dow r wherever necessary.
(iv) Figures to the right intricate full marks.
(v) Assume suitable dat il necessary.

SECTION I

1. (a) A survey has taken on methods of computer travel. Each respo@t was asked to check bus, train or automobile as a major method of travelling to work. More than ane answer was permitted. The result reported were as forms :
people, train -35 people, automobile- 100 people, bus nd train- 15 people, bus and automobile-15 people, train and automobile- 20 people and all three methods- 5 people. How many people completed a survey form ?
(b) Obtain conjunctive normal form of each of the following :
(i) $\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q})$
(ii) $\sim(p \vee q) \leftrightarrow(p \wedge q)$
(iii) $(p \rightarrow q) \wedge(q \rightarrow p)$.
(c) Using Venn diagrams, show that :
(i) $\mathrm{A} \cup(\mathrm{B} \cap$
$\mathrm{C})=(\mathrm{A} \cup$
B) $\cap(A \cup$
C)

(ii) $\mathrm{A} \cap(\mathrm{B} \oplus$
$\mathrm{C})=(\mathrm{A} \cap$
B) $\oplus(\mathrm{A}$
Or
2. (a) Using Mathematical induction, prove bat :

$$
1^{2}-2^{2}+3^{2}-4^{2}+\ldots \ldots\left(n^{2}=(-1)^{n-1} \cdot \frac{n(n+1)}{2}\right.
$$

(b) Translate the following in logical notations :
(i) For any value of \int^{2} is non-negative
(ii) For every value x, there is some value of y such that $x-X=1$
(iii) There positive values of x and y such that $x, y \geq 0$.
(c) Negate each of the following statements :
(i) $|x|=x$
(ii) $\exists x, x^{2}=x$
(iii) If there is not, then someone is killed.
(d) For multisets, define in brief :
(i) Multisets
(ii) Multiplicity of an element in a multiset
(iii) Cardinality of multiset
(iv) Union of multiset
(v) Intersection of multiset
(vi) Difference of multiset.
3.
(a) A menu card in a restaurant displays four soups, five main courses, three deserts and 5 be rages. How many different menus can a customer select
(i) He selects one item each group without omission.
(ii) He chooses to ont the beverages, but selects one each from the other group.
(iii) He choose omit the deserts, but decides to take a beverage and one item each from the remaining grout
(b) How my automobile licence plates can be made if each plate consists of different letters followed by three different Solve the problem if first digit cannot be 0 . [6]
(c) A pair of fair dice is thrown. If the two numbers appearing are different, find the probability P that
(i) the sum is 6
(ii) an ace appears.

Or
4. (a) Show that :

$$
\begin{equation*}
{ }^{n} C_{1}+6\left({ }^{n} C_{2}\right)+6\left({ }^{n} C_{3}\right)=n^{3} \tag{6}
\end{equation*}
$$

(b) A fair coin is thrown 10 times. Find th probability of getting exactly 6 heads and at le
(c) Define :
(i) Trial and event
(ii) Exchaustive events and sample space
(iii) Favourable events
(iv) Mutually excluste events
(v) Equally likely vents
(vi) Independent events.
5. (a) Find the transitive closure of R be Warshall's algorithm where

$$
\begin{align*}
& \mathrm{A}=\{1,2,3,4,5,6\} \text { and } \\
& \mathrm{R}=\{(x-y) ;|x-y|=2\} \tag{6}
\end{align*}
$$

[3762]-601
(b) Draw the Hasse diagram of the following sets under the partial ordering relation 'divides' and indicate those which are chains :
(i) $\{2,4,12,24\}$
(ii) $\{1,3,5,15,30\}$.
(c) Explain the following with example :

(i) Reflexive relation
(ii) Symmetric relation
(iii) Antisymmetric relation
(iv) Tansitive relation.
6. (a) Let functions f and be fined by $f(x)=2 x+1$ and $g(x)=x^{2}-2$ respeci ely. Find :
(i) $g \circ f$ (4) an $f \circ g(4)$
(ii) $g \circ f(a+2)$
(iii) $f \circ g+2$.
[6]
(b) Let $\mathbb{T}=\{1,2, \ldots \ldots . .7\}$ and $\mathrm{R}=\left\{\left.(x, y)\right|_{x-y}\right.$ is divisible by 3$\}$ that R is equivalence relation. Draw graph of R. [6]
(c) Find the numeric function for :

$$
\begin{equation*}
\mathrm{A}(z)=\frac{2}{1-4 z^{2}} \tag{4}
\end{equation*}
$$

SECTION II
7. (a) How many nodes are necessary to construct a gr ap with exactly 8 edges in which each node is of ogre 2. [6]
(b) State the Dijkstra's algorithm to obtain the hortest path (distance) between two vertices in the give rath and apply the same to obtain the shortest path between a to z in

8. (a) Determine minimum spanning tree for the given graph using Prim's algorithm.

(b) Draw fundamental cut-sts and union of edge disjoint fundamental cut-sets of G with respect to trees T_{1} and T_{2} as shown below
[6]

(c) Jor hollowing set of weights construct an optimal binary Prefix code. For each weight in the set give corresponding code word. $5,7,8,15,35,40$.
9. (a) Identify whether the graph given are planar or not. [4]

(i)

find the H miltonian
(b) Use nearest neighbour method to find the HAmiltonian circuit starting from a in the following graph. Find its weight.

(c) Give the stepwise constr action of minimum spanning tree for the following graph using Prim's algorithms.

10. (a) Determine the maximal flow in the following transport network.

(b) Determine which of the graphs of the given figure represent Eulerian circuit, Hamiltoniz circuit, Bipartite graphs and planar graph. Justify yd ar answer.

(c) Draw two non-isomorphic trees with six points.
11. (a) Determine whether or not the following operations on the set of integers I are associate :
(i) Division
'(ii) Exponentiation.
(b) G is a group and there exists two relatively p pe positive integers m and n such that $a^{m} b^{m}=b^{m} a^{m}$ and $v^{n}=b^{n} a^{n}$ for all $a, b \in \mathrm{G}$. Prove that G is an delian group.
(c) Show that $\mathrm{R}=\{a+b \sqrt{2} ; b \in \mathrm{I}\}$ for the dUration,$+ \times$ is an integral domain but not a field.

Or
12. (a) I is a group of integers undeddition, H is a subset of I consisting of all multiples a positive integer m : that is

$$
\begin{equation*}
\mathrm{H}=\left\{\ldots,-2, \mathrm{~V}^{n} 0, m, 2 m, \ldots . .\right\} \text {, } \tag{6}
\end{equation*}
$$

show that H is subgroup of I.
(b) Let G be a sro, and N be a normal subgroup. Prove that $(G / \mathbb{N}, *$ is a group.
(c) Prove that every cyclic group is an abelian group. [4]

