(B) sum of half power frequencies.

Diplete – Et (NEW SCHEME) – Code: DE57

Subject: NETWORKS AND TRANSMISSION LINES

Time: 3 Hours

DECEMBER 2009

Max. Marks: 100

 (2×10)

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. If V_{th} and R_{th} are the thevenin's voltage and resistance, R_L is the load resistance then thevenin's equivalent circuit consists of
 - (A) series combination of ${}^{I\!\!R}$ th and ${}^{V\!\!th}$
 - (B) series combination of R th, V th and ^{R}L
 - (C) parallel combination of ${}^{R}\,{}_{th},{}^{V}{}_{th}$ and ${}^{R}{}_{L}$
 - (D) parallel combination of ${}^{R}\!$ th and ${}^{V}\!$ th
- b. The laplace transfer of shifted unit step function f(t) = u(t a) is given by
 - (A) $\frac{a}{s+a}$ (B) $e^{-as\left(\frac{1}{s}\right)}$
 - (C) $\frac{1}{s+a}$ (D) None of the above.
- c. In z parameter representation if $z_{21} = z_{12}$ then the network is
 - (A) bilateral(B) symmetrical(C) balanced(D) inverse (reciprocal)
- d. The characteristic impedance of a distortionless line is
 - (A) real(B) inductive(C) capacitive(D) complex
- e. For a prototype lowpass filter, the phase constant $\,\beta\,$ in the attenuation band is
 - (A) α (B) π (C) $\frac{\pi}{2}$ (D) 0
- f. In a series resonant circuit, the resonant frequency will be
- (A) geometric mean of half power frequencies.

(C) arithmetic mean of half power frequencies.

- (D) difference of half power frequencies.
- g. One neper is equal to

(A) 0.8686 db	(B) 8.686 db
(C) 86.86 db	(D) 19.686 db

h. Thevenin's theorem is valid for networks containing only

(A) reactive elements	(B) non linear elements
(C) linear elements	(D) bilateral network

i. VSWR on short circuited lossless line is given by:

- -

(A) 0	(B) ∞
(C) Unity	(D) None of above

j. Attenuators have

(A) attenuation and phase constant	(B) gain only
(C) attenuation constant	(D) gain and phase constant

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain in detail different types of network elements.	(8)	
	b.	 A current of 5A flows through a parallel combination of resistive net (i) Power observed in the resistor. (ii) Energy dissipated in the resistor/minute. (iii) Charge flow through the resistor/minute. (iv) Net resistance. 	work of $20\Omega \& 30\Omega$.Find the	
Q.3	a.	State superposition and maximum power transfer theorem.	(4+4)	
				_

b. Use Millman's theorem to determine the voltage V_s of the network shown in Fig.1 given that $V_R = 230 \angle 0^\circ V$,

(8)

$$V_{\rm Y} = 230 \angle -120^{\circ} V$$
,
 $V_{\rm B} = 230 \angle 120^{\circ} V$.

