Computer Organisation and Architecture 2009 May **Technology BCA** Semester 2 University Exam Mangalore University

shaalaa.com

BCACAC 153

eg. No.			1 1

.20

Credit Based Second Semester B.C.A. Degree Examination April / May 2009

COMPUTER ORGANISATION AND ARCHITECTURE

Time: 3 Hours

6

Max.Marks: 80

Note: Answer any TEN questions from PART A and answer any one full question from PART B.

PART-A

- Convert (BCA) to binary and octal. 1. a.
 - Write the truth table and logic diagram of XOR gate. b.
 - What is IC? Give the classification of IC based on number of transistor. C.
 - What is the difference between Canonical and standard form? d.
 - Prove X+XY=X. e.
 - What is meant by principle of duality? Write the dual of the given expression f. F=(X+Y)(X+Y')(X+Y+Z)
 - What are characteristic table? Write the characteristic table of SR flip flop. g.
 - Write BCD and Binary equivalent of (98)10. h.
 - i. Draw the circuit diagram of SR latch using NOR gate.
 - Write the truth table and logic expression of Half Adder. j.
 - What is a counter? Minimum of how many flip-flops are required to design 3 bit k. counter.
 - 1. Differentiate between 1's and 2's complements.

PART-B

UNIT-I

- 2. a. What is Instruction? Explain the following Assembly level language instruction with example.
 - i) ADD ii) MUL iii) BRM
 - b. Write the Assembly level language code to evaluate $Y = X^2 + Y^2 + Z^2$
 - c. Perform following conversion.
 - i) (1101.101)₂=()₁₀
 - ii) (125.48)₁₀ =()₈
 - iii) (BCD.A1)₁₆=()₂

(7+2+6)

Contd... 2

Visit www.shaalaa.com for more question papers.

(2x10=20)

53

BC	CACA	AC 153 F	age No. 2
3.	a.	Explain floating point number Addition and Multiplication with an exa	ample
	b.	What are Octal and Hexadecimal number system? Explain conver- Decimal to Octal and Hexadecimal with an example.	ersion from
	C.	Explain following. i) Decimal codes.	
		ii) Alphanumeric codes.	(5+6+4)
		UNIT-II	
4.	a.	Simplify given Boolean expression using theorems and postulates. F(W,X,Y,Z)=XY'Z+X'Y'Z+W'XY+WX'Y+WXY and draw the logic di minimized expression.	agram for
	b.	Using K-Map simplify the following expression. $F(A,B,C,D) = \sum (0,2,4,5,6,7,8,10,13,15)$	
	C.	Express the Boolean function F=xy'+x'z in sum of minterm and p Maxterm form.	oroduct of (6+4+5)
5.	a.	State any 5 postulates of Boolean algebra.	
	b.	Minimize $F(A,B,C,D)=\sum (0,3,4,7,8)+\sum d(10,11,12,13,14,15)$ and draw diagram for minimized expression.	the logic
	C.	Prove that NAND is Universal gate.	(5+5+5)
6.	а.	Explain the working of JK flip-flop.	
	b.	Design MOD 7 synchronous counter using JK flip-flop.	
	C.	What is shift register? Explain with neat diagram.	(5+5+5)
7.	a.	Design BCD ripple counter.	
	b.	Design MOD-4 synchronous counter using T-flip flop.	
	C.	Explain state table, state diagram and state equation using example.	(5+5+5)
		UNIT-IV	
8.	a.	Design and explain BCD adder.	
	b.	Perform following subtraction using 1's and 2's complement method. i) $(58)_{10} - (12)_{10}$ ii) $(10011.11)_2 - (11000.10)_2$	
	C.	Explain 2's complement addition with example.	(5+6+4)
9.	a.	Explain the working of Full-Adder with logic diagram.	
		Explain shift operation with suitable diagram.	
	C.	Perform following subtraction using 9's and 10's complement method. i) $(8^{52})_{10}$ - $(3250)_{10}$ ii) $(6320)_{10}$ - $(8659)_{10}$	(5+6+4)
		* * *	

Visit www.shaalaa.com for more question papers.

54