

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 DATA STRUCTURES WITH C SEMESTER - 2

Time	: 3 H	ours				[Full Marks : 70
*			(Multiple	Questions)		
1.	Choo	ose th	e correct alternatives fo	or the following		10 × 1 = 10
	i)	Wor	st case time complexity	of the heap so	ort algorithm is	
	•	a)	O(Nlog 2 N)	b)	O(NlnN)	
		c)	O(n ²)	d)	O(n ³).	
	ii)	Pick	out the invalid statem	ent from the fo	llowing :	
		Que	eue can be used			
		a)	in the printer	b)	to access to disk s	torage
		c)	for function call	d)	none of these.	
	iii)	In l	inked list, the logical o	rder of element		
•		a)	is same as their phy	sical arrangem	ent	
•		b)	is not necessarily eq	uivalent to thei	r physical arrangeme	nt
		c) '	is determined by the	eir physical arra	angement	
		'പ	none of these			

įv)	The	method of collision proce	ssing require	s prime area and overnow a	uea oi
	a)	linked collision processi	ing		
	b)	linear collision processi	ng		•
•	c)	quadratic collision proc	essing		
	d)	none of these.			
v)	Whi	ich is not representation o	of a graph?		
	a)	Adjacency matrix	b)	Edge list	
	c)	Adjacency list	d)	All represents a graph.	
vi)		hould be repeatable		feature of a good hashing	
	b) c)	allow even distribution minimize synonyms	of records thr	oughout the allocated spac	e
	d)	none of these.			
vii)	٠			row major order. If the ados of the element $A(i, j)(A)$	
				ment occupies one location	
	that				
	a)	M + (i-j) * m + j - 1		M + i* m + j	
,	c)	M + (j-1) * m + i - 1	: d)	$M + (i-1)^* n + j - 1.$	

viii)	Refe	erence count may be r	naintained for	r memory locations	used in linked list for
•	the	purpose of			
	a)	Copying .	b)	Compaction	
	c)	Reclamation	d)	Traversal.	
ix)	The	maximum number of	nodes in a bir	nary tree of depth 5	ts
	a)	31	b)	16	
	c)	32	d)	15.	
x)	In v	which collision proces	sing method,	it is not required	to detect a given list
**	posi	ition, if it is occupied o	r not ?		
	`a)	Quadratic	, b)	Linked	
	c)	Rehashing	d)	None of these.	
			GROUP - I		
			Answer Type		$3 \times 5 = 15$
		Answer	any three of t	ne ionowing.	3 x 5 = 15
Is cir	cular	r queue a non-linear d	ata structure	? Justify your answ	rer. 5
Name	e son	ne non-linear data str	uctures. Criti	cally compare linea	r and non-linear data
struc	ture	s.			1 + 4
Write	e a (C function to reverse	a linked list	t physically. (Tha	t is change the node
posit	ions.)			
Write	the	push() and pop() fur	nctions for a	stack after describi	ng the Data-Structure
clear	ly.				. 5
What	t is h	ashing ? Why is it use	d ? Explain t	he chaining method	of collision resolution
in ha	shin	g.			5

2.

3.

5.

6.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

Define B-tree. Construct one B-tree of order 3 with the following data: 7. a)

50, 40, 60, 30, 70, 20, 80, 10, 90, 9, 99.

8

Construct a binary Tree from the following information: b)

In order: 50, 10, 30, 90, 60, 80, 40, 20, 70

Preorder: 60, 10, 50, 90, 30, 40, 80, 70, 20.

7

- Explain AVL tree. Discuss how to insert an element in an AVL tree (Explain all 8. al 8 cases).
 - Write an algorithm for deletion of an element from BST. (Include all the cases). b)

7

- Explain Heap. What is priority queue? How will you implement a priority queue using 9. 4 + 3 + 8Heap? Explain with suitable example.
- In how many ways, can you represent a graph in a computer memory? Which 10. one is advantageous and why?
 - Write down the DFS algorithm. b)

6

How is random access file different from indexed sequential file? What is c) Garbage collection?

5

5

Explain Polish and Reverse polish notations. a) 11.

5 + 5

- Convert the following: b)
 - $A + (((B-C)^*(D-E)+F)/G) (H-I) [POSTFIX]$
 - ABC / DEF + * + ii)

[PREFIX].

END