AMIETE - ET (NEW SCHEME) Code: AE74

Subject: VLSI DESIGN

DECEMBER 2010 Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining FICHT Questions ensure any FIVE Questions. Fach question

Q.1	Choose the correct or the best alternative in the following:		(2×10)
	a. MOS transistor with implant channel is called as		
	(A) bipolar (C) BiCMOS	(B) enhancement(D) depletion	
	b. Substrate in nMOS is		
	(A) N type(C) polysilicon	(B) P type (D) metal	
	c. Switching speed of MOS transistor is inversely proportional to channel.		of the
	(A) square of length(C) square root of length	(B) length(D) three times of length	
	d. Zpd/Zpu for an nMOS inverter	·	
	(A) 1/6 (C) 1/8	(B) 1/16 (D) 1/4	
	e. latch up in CMOS circuit exists in		
	(A) P-well only(C) P-well and n-well	(B) n-well only(D) twin tup	
	f. Feature size of MOS transistor is		
	(A) $2\lambda \times 2\lambda$	(B) $\lambda \times \lambda$	
	(C) $4\lambda \times 4\lambda$	(D) $\frac{\lambda}{2} \times \frac{\lambda}{2}$	

		(A) 0.0005 pF (C) 0.01 pF	(B) 0.04 pF (D) 0.02 pF				
	h. Overall delay fd for nMOS cascaded inverter driven by large capacitive load						
		(A) 3.5 eN τ (C) 1.5 eN τ	(B) 4.5 eN τ (D) 2.5 eN τ				
	i. Gate Area Ag is scaled by						
		(A) 1/α	(B) 1/β				
		(C) $1/\alpha^2$	(D) $1/\beta^2$				
	j. In constant field scaling model						
		$(\mathbf{A}) \ \alpha = \frac{1}{\beta}$	(B) $\beta = 1$				
		(C) $\beta = \alpha$	(D) $\alpha = 1$				
	Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.						
Q.2	a.	a. With neat diagram explain the working of enhancement mode nMOS transistor. (8)					
	b.	Design the inverter using CMOS lo	ogic. Explain its characteristics also.	(8)			
Q.3	$\mathbf{J}_{\mathbf{d}s}$ a. Derive an expression for $\mathbf{I}_{\mathbf{d}s}$ in non saturated and saturated region. (10)			(10)			
	b. What is body effect? Explain briefly how threshold voltage Vt will be affected by body effect.			(6)			
Q.4	a.	a. Obtain pull up to pull down ratio for a nMOS inverter driven through one or more pass transistor. (10)					
	b.	Explain the working of MOSFET.		(6)			
Q.5	a.	Write λ based design rules for wire	es and transistor.	(8)			
	b.	Define sheet resistance and standar	d capacitance for a feature size transis	tor.(8)			
Q.6	a. Derive an expression for total delay for N-cascaded inverters driving a large capacitive load. (8)			_			

g. Standard unit capacitance value $\,C_g\,$ for $5\,\mu\,m$ MOS transistor is _____.

b. Two nMOS inverters are cascaded to drive a capacitive load $C_L = 16C_g$ as shown in Fig.1. Calculate pair delay in terms of τ . (8)

<u>Inverter 1</u>	<u>Inverter 2</u>
$Lpu_1 = 16 \lambda$	$Lpu_2 = 2\lambda$
\overline{W} pu ₁ =2 λ	$\hat{\text{Wpu}}_2=2 \lambda$
$Lpd_1 = 2 \lambda$	$Lpd_2 = 2 \lambda$
$Wpd_1=2 \lambda$	Wpd ₂ =8 λ

Fig. 1

- **Q.7** a. Obtain scaling factor for the following:
 - (i) Parasitic capacitance (ii) Channel resistance (iii) Gate delay
 - (iv) Saturation current (8)
 - b. Design a two-line to four-line decoder circuit to the mask layout level and determine its boundary box. (8)
- Q.8 a. Design two input NOR gate using CMOS. (6)
 - b. Write an example of an inverter showing that the power dissipation decreases at the expense of area. (10)
- Q.9 a. Write a note on design styles in VLSI. (6)
 - b. Obtain test-vector for the Fig.2, using sensitised path based testing. (10)

