www.vidyavision.com

Code No: RA CS05140

RA

Max Marks: 80

II B.Tech II Semester(R05) Supplementary Examinations, December 2010 COMPUTER ORGANIZATION (Computer Science & Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

1.	(a)	Explain about different buses in a practical computer system and their implications of precision and addressability.	on accuracy, [10]
	(b)	What is Amdhal?s Law?	[6]
2.	(a)	Design a circuit transferring data from a 4bit register which uses D flip-flops to anot which employs RS flip-flops.	her register [8]
	(b)	What are register transfer logic languages. Explain few RTL statement for branching actual functioning.	g with their [8]
3. Draw the general block diagram of a microsequencer. Explain clearly the inputs and outputs of the same along with their functioning. [16]			
4.	(a)	How many bits are needed to store the result addition, subtraction, multiplication a of two n-bit unsigned numbers. Prove.	and division [8]
	(b)	What is overflow and underflow. What is the reason?. If the computer is considered system do we still have these problems?.	l as infinite [8]
5.	(a)	Explain how the Bit Cells are organized in a Memory Chip.	[8]
	(b)	Explain the organization of a 1K x 1 Memory with a neat sketch.	[8]
6.	(a) (b)	What is Direct Memory Access? Explain the working of DMA. What are the different kinds of DMA transfers? Explain.	
	(c)	What are the advantages of using DMA transfers?	[8+4+4]
7. Explain the following with related to the Instruction Pipeline			
	(a)	Pipeline conflicts	
	(b)	Data dependency	
	(c)	Hardware interlocks	
	(d)	Operand forwarding	
	(e)	Delayed load	
	(f)	Pre-fetch target instruction	
	(g)	Branch target buffer	
	(h)	Delayed branch	$[8 \times 2 = 16]$
8.	(a)	Explain multiport memory organization with a neat sketch.	
	(b)	Explain system bus structure for multiprocessors with a neat sketch.	[8+8]
