Code: R7100406

B.Tech I Year (R07) Supplementary Examinations, December 2010 NETWORK ANALYSIS

(Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Electronics & Computer Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE questions All questions carry equal marks

1. In the circuit shown in figure 1, determine the current through the 2 Ω resistor and the total current delivered by the battery. Use Kirchoff's laws.

Figure 1:

- 2. Define average value and obtain in the same for a half wave rectified voltage wave.
- 3. (a) Compare series and parallel resonance.
 - (b) Define band width. Draw a sketch and explain.
 - (c) Define Q factor of a coil. Derive an expression for the same.
- 4. Write the tie set schedule for the n/w shown in figure 2.

Figure 2:

- 5. State and Explain with proof of Tellegan's Theorem.
- 6. For the two port n/w shown in the figure 3, the currents I₁ and I₂ entering at port 1 and 2 respectively are given by the equations.

 L. = 0.5 V₂ = 0.2 V₂

$$\vec{I}_{1} = 0.5 V_{1} - 0.2 V_{2}
\vec{I}_{2} = -0.2 V_{1} + V_{2}$$

Figure 3:

Where V_1 and V_2 are the port voltages at port 1 and 2 respectively. Find the Y, Z, ABCD parameters for the n/w. Also find its equivalent p network.

- 7. Derive the DC response of an RC circuit.
- 8. Categorize filters and explain.