GUJARAT TECHNOLOGICAL UNIVERSITY BE SEM-III Examination May 2012

Subject code: 132603

Subject Name: Thermodynamics of Elastomers & Polymers

Date: 10/05/2012

Instructions:

Time: 02.30 pm – 05.00 pm Total Marks: 70

1. Attempt all questions.

- 2. All notations used have conventional meaning.
- 3. Make suitable assumptions wherever necessary.
- 4. Figures to the right indicate full marks.

Q.1	(a)	Define the following terms: State of system, State and Path functions, Isochoric, Isobaric and Isontronic process	07
	(b)	Write the mathematical form and limitations of First law of thermodynamics.	07
Q.2	(a)	Show that PV^{γ} = constant for an ideal gas undergoing adiabatic process.	07
	(b)	Explain Joule-Thomson effect.	07
		OR	
	(b)	Discuss on Carnot's Theorem.	07
Q.3	(a)	Derive the formula for entropy change of an ideal gas.	07
	(b)	Derive Maxwell thermodynamic relations.	07
		OR	
Q.3	(a)	30 g of water at 35 ^o C is converted into steam at 200 ^o C. Calculate the entropy change. Data:	07
		Heat capacity of superheated steam = 1.98 J/g K	
		Heat capacity of water = 4.2 J/g K	
		Latent heat of vaporization at $100 {}^{0}\text{C} = 2260 \text{J/g}$	
	(b)	Derive Clapeyron-Classius equation and discuss its application in detail.	07
Q.4	(a)	Write different statements of second law of thermodynamics.	07
	(b)	Explain the concept of ceiling temperature. List four important possibilities of polymerization.	07
		OR	
Q.4	(a)	Derive the expression for Van't Hoff Isotherm.	07
-	(b)	List the characteristics of good fuel.	07
Q.5	(a)	Write the Phase rule equation. Give the merits and demerits of Phase rule.	07
-	(b)	Explain homogeneous, heterogeneous and physical equilibrium with the help of example.	07
		OR	
Q.5	(a) (b)	Explain the Law of Mass Action. Also give the relation between K_p and K_c . Discuss on Water system.	07 07
	()	-	
