5/23/12 Code: A-20

AMIETE - ET (NEW SCHEME) - Code: AE72

Subject: MICROWAVE THEORY AND TECHNIQUES

JUNE 2010

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

•	Choose the correct or the best alto	ernative in the following: (2×10)		
â	If the spacing between the transmission lines is smaller than the wavelength of the transmitted signal, the transmission line must be analysed as			
	(A) a coaxial transmission line	(B) a waveguide		
	(C) a twisted pair	(D) a two open wire line		
ł	b. In a standing wave pattern of the v is	voltage wave, the distance between any two successive maxima of minima		
	(A) one wavelength	(B) one fourth wavelength		
	(C) one half wavelength	(D) n wavelength		
(c. The dominant mode in a particular wave guide is the mode having cut-off frequency.			
	(A) lowest	(B) low		
	(C) high	(D) highest		
(d. The tunnel diode is a	resistance semiconductor p-n junction diode.		
	(A) nil	(B) positive		
	(C) negative	(D) high resistance		
(. A parametric device is one that uses			
	(A) linear reactance	(B) time invariant reactance		
	(C) non linear reactance	(D) time varying resistance		
1	In practice, the electronic efficiency of a Klystron amplifier is in the range of			
	(A) 60 to 65%	(B) 0 to 15%		
	(C) 85 to 100%	(D) 15 to 30%		

iete-elan.ac.in/qpjun10/AE72.htm

1/4

5/23/12 Code: A-20

		 (A) moderate power and BW (B) high efficiency and saturated amplification (C) small size and low weight (D) all given in (A), (B) & (C). 	cation		
	h	h. The parameters of a rectangular micro conductor, the d , the diameter of the wi	-	ls. On transformation in to a circular	
			(B) 6.7 mils (D) 2.8 mils		
	i.	The packaging density of a typical mono	nonolithic microwave IC (MMIC) is compared to conventional ICs.		
		(A) the same(C) quite high	(B) quite low(D) high		
	j.	In free space the propagation-delay time	ree space the propagation-delay time is		
		(A) 3.333 ns/m (C) 3.333 ms/m	(B) 3.333 µs/m (D) 3.333 s/m		
		Answer any FIV Each	E Questions out of EIGHT Question question carries 16 marks.	ons.	
Q.2	a.	Express the propagation constant in ter	ms of the transmission line parameters I	R, L, G and C.	
	b.	Derive the following expressions for tra			
		**	(ii) phase constant(iv) phase velocity	(6)	
		c. Show that for air insulated co vacuum.	nductors, the phase velocity is appro-	ximately equal to velocity of light in (2)	
Q.3		A transmission line has the following p $G = 0.01 \text{s/m}$. Calculate the propaga these quantities in the absence of loss (Derive the total solution of the Helmhol	tion constant and characteristic impeda $R=G=0$).	/m , $C = 300$ pf /m , $R = 5 \Omega$ /m and nnce of this line at 500 MHz Recalculate (6)	
	b.	Explain the methods of exciting various	modes in rectangular waveguides.	(8) (3)	
		c. An air-filled rectangular waveguid Determine:(i) the cut-off frequency(ii) find the phase velocity in the guide	e of inside dimensions 7×3.5 cm operators of 4GHz	erates in the dominant $^{\mathrm{TE}_{10}}$ mode.	
		(iii) find the guided wavelength $^{\lambda}$ g at the	ne same frequency	(5)	
Q.4	a.	Derive the S-matrix of a directional couq, the coupling factor. (6)	upler. Also reduce the S-matrix in the t	erms of p, the transmission factor and	

5/23/12 Code: A-20

2			Code: A-20			
	b.	b. A 2 W power source is connected to the input of a directional coupler with $C = 20 \text{ dB}$, $D = 25 \text{ dB}$, and insertion loss of 0.7 dB. Find the output powers (in dBm) at the through, coupled, and isolated ports. Assume ports are to be matched.				
	c.	Explain briefly Faraday-rotation isolator.			(4)	
Q.5	a	a. Draw the equivalent circuit for a par properties of a parametric up-converter.	rametric amplifier.	Clearly mark all	the parameters and (4)	d list out the two
	b.	Explain the J-E characteristics of Gunn di	iode.		(5)	
	c.	Explain each term for parametric up-conv (i) Power gain (ii) Noise figure and and calculate the same for the following g	l (iii) Bandwidth			
		Ratio of output frequency over signal free Figure of merit:	quency:	$f_o/f_s = 25$ $\gamma Q = 10$		
		Factor of merit figure:		y = 0.4		
		Diode temperature:		$Td = 350^{\circ} K$		
					(4+3)	
Q.6	a.	Explain the operating principle of Helix Tr	ravelling wavetubes	•	(4)	
	b.	Explain the limitations of conventional vac	cuum tubes and how	it can be overcor	me? (6)	
	c. What do you mean by velocity modulation in Klystron and derive the expression for it? (6				(6)	
Q.7	a.	List the three types of magnetrons.			(3)	
	b. Give the Hull cut-off voltage and Hull cut-off magnetic flux density for a linear magnetron.			magnetron.	(7)	
	C	A linear magnetron has the following operating parameters:				
	٠.	Anode voltage:				
		i miede venage.	0 n = 17A			
		The de Current	$B_0 = 0.01 \text{wb/m}^2$			
		Magnetic flux density:	o = 0.01wo/m			
	Distance between cathode and anode: d = 6 cm Compute					
		(i) The Hull cut-off voltage for a fixed B	0.			
		(ii) The Hull cut-off magnetic flux density for a fixed V_0			(6)	
Q.8	a.	Explain the difference between microstrip	line and stripline		(4)	
	b.	List the parameters namely Inductance, L, Capacitance, C, Characteristic impedance \mathbb{Z}_0 & phase velocity, \mathbb{S}_p for				
		a lossless parallel strip line. (8)				
	c.	. A gold parallel strip line has the following parameters:				
		Relative dielectric constant of polyethylene: $\varepsilon_{\rm rd} = 2.25$				
		Strip width: $w = 25 \text{ mm}$ Separation distance: $d = 5 \text{ mm}$				
Separation distance: d = 5 mm Calculate the						
		(i) Characteristic impedance of the strip	line			
		· · · · · · · · · · · · · · · · · · ·				

5/23/12 Code: A-20

	(ii) Strip-line capac(iii) Strip-line induct(iv) Phase velocity.		(4)	
Q.9	a. List the advantages	of MMIC circuits over discrete circuits.	(3)	
	b. List the basic chara	cteristics required for ideal substrate materials.	(3)	
	c. Describe a thin film planar resistor and express the resistance in terms of		s of its parameters.	(5)
	d. Explain the planar ca	apacitor film development in MMICs.	(5)	