BT-6/J07

Digital Signal Processing

Paper: ECT-306

Option: II

Time : Three Hours] [Maximum Marks : 75

Note: Attempt FIVE questions in all, selecting ONE question from each section. Q. No. 9 is compulsory.

SECTION-I

1. (a) A digital filter is characgterised by the transfer function :

H(z) =
$$\frac{1 + 2z^{-1} + 3z^{-2} + 2z^{-3}}{1 + 0.9z^{-1} - 0.8z^{-2} + 0.5z^{-3}}$$

check the stability of the filter using Jury-Marden stability criteria.

(b) Determine the causal signal x(n) if its z-transform, X(z) is given by:

$$X(z) = \frac{1-az^{-1}}{z^{-1}-a}$$

8

3

- (a) Determine 8-point DFT of the sequence x(n) = {0, 1, 2, 2, 3, 4, 5, 6} using Radix-2, DIT-FFT algorithm.
 - (b) Explain bit-reversal in context of FFT algorithms.

SECTION-II

3. (a) A FIR filter is given by the difference equation:

$$y(n) = 2x(n) + \frac{4}{5}x(n-1) + \frac{3}{2}x(n-2) + \frac{2}{3}x(n-3)$$

determine its lattice form.

9

(b) Obtain Direct form-I, Direct form-II and cascade form structures for the following system:

$$H(z) = \frac{2(1-z^{-1})(1+\sqrt{2z^{-1}}+z^{-2})}{(1+0.5z^{-1})(1-0.9z^{-1}+0.81z^{-2})}$$

4. (a) Sketch the lattice-ladder structure for the system :

$$H(z) = \frac{1 - 0.8z^{-1} + 0.15z^{-2}}{1 + 0.1z^{-1} - 0.72z^{-2}}$$

and also check the stability.

9

(b) Explain Frequency Sampling Structure.

6

SECTION-III

5.	(a) Show that FIR filters are always stable filters.	3
	(b) Design a linear phase low pass FIR filter	
	coefficients, whose cut-off frequency is 200 Hz.	
Zyd.	sampling frequency = 2 kHz.	12
6.	Determine the coefficients {h(n)} of a linear-pase FIR	
	length M = 15, which has a symmetric unit sample responsatisfies the condition	onse that
	$(2\pi K)$ [1, K=0,1,2,3]	
	$H_{r}\left(\frac{2\pi K}{15}\right) = \begin{cases} 1, K = 0,1,2,3\\ 0, K = 4,5,6,7 \end{cases}$	15
	SECTION—IV	
7.	Determine the system function $H(z)$ of the lower Chebyshev digital filter that meets the following specific (i) $1/2$ dB ripple in passband, $0 \le \omega \le 0.24 \pi$	
	(ii) At least 40 dB attenuation in the stopband 0.35π ≤	ω ≤π.
	Use the Bilinear transformation.	15
8.	Explain design of IIR filters in frequency domain.	15
17.	Compulsory question	
9.	(i) Alternation theorem	3
	(ii) Impulse Invarient technique	4
7	(iii) All-pass filters R OF KNOWLEDGE	3
	(iv) Transposed form structures	5