AMIETE – ET (NEW SCHEME) - Code: AE73

Subject: INFORMATION THEORY & CODING

Time: 3 Hours

JUNE 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The probability that a student passes Mathematics is 2/3 & that of Biology is 4/9. If the probability of passing at least one is 4/5, what is the probability that he will pass both courses.

(A) 14/45	(B) 45/14
(C) 0	(D) 1

- b. The percentage of alcohol in a compound may be considered as a random variable X, where $0 \le X \le 1$, having the PDF $f(X) = 20X^3(1-X)$. Then the value of $P\left(X \le \frac{2}{3}\right)$ is (A) 0.9064 (B) 0.4609 (C) 1 (D) 0
- c. The probability distribution of a random variable 'X' is given by $P(X = x) = \left(\frac{3}{4}\right) \left(\frac{1}{4}\right)^{x} \left(\frac{3}{4}\right)^{3-x}, x = 0,1,2,3, \text{ then the mean of 'X' is}$ (A) 1.875
 (B) 2.875
 (C) 0
 (D) 1
- d. The binary symbols 0 & 1 are transmitted with probabilities $\frac{1}{4}$ & $\frac{3}{4}$ respectively. The corresponding self information are

(A) 2 bits & 0.415 bits	(B) 0 & 1 bits
(C) 1 & 0 bits	(D) 0 & 0 bits

e. A source S = {S₁, S₂, S₃} emits symbols with P = $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}$. The total information of all the messages is

(A) 2 bits	(B) 3 bits
(C) 4 bits	(D) 5 bits

AE73 / JUNE - 2011

f.	Equivocation with respect to a channel is a measure of								
	(A) Certainty(C) Probability	(B) Uncertainty(D) Statistics							
g.	g. The maximum rate of transmission occurs when the source & channel are								
	(A) Matched(C) Inductive	(B) Mismatched(D) Capacitive							
h.	A Gaussian channel has a 10MH capacity is	z bandwidth. If $\frac{S}{N} = 100$, the channel							
	(A) 66.59×10^6 bits/S (C) 77.60×10^6 bits/S	(B) 55.48×10^7 bits/S (D) 44.37×10^6 Bits/S							
i.	i. If the message bits appear together at the beginning or end of a codewo the code is								
	(A) Non-systematic(C) Forward	(B) Systematic(D) Backward							
j.	For a valid code vector, the product	CH ^T is							
	(A) Unity	(B) Zero							

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

(D) Not defined

- **Q.2** a. Binary data are transmitted over a noisy communication channel in blocks of 16 binary digits. The probability that a received binary digit is in error due to channel noise is 0.1. Assume that the occurrence of an error in a particular digit does not influence the probability of occurrence of an error in any other digit within the block (i.e. errors occur in various digit positions within a block in a statistically independent fashion).
 - (i) Find the average (or expected) number of errors per block.
 - (ii) Find the variance of the number of errors per block.

(iii) Find the probability that the number of errors per block is greater than or equal to 5. (8)

- b. A message is coded in binary code, the probabilities of transmission of the two symbols are 0.45 & 0.55 respectively. In the channel of communication, the symbol 1's are distorted into 0's with a probability of 0.1 & 0's are distorted into 1's with a probability of 0.2. Find the probability that
 - (i) A received '0' has not been distorted.
 - (ii) A received '1' has not been distorted.

(8)

(C) Infinity

2

Q.3	a.	Define the following:											
		(i) PDF	(ii)	CDF	(iii)	Sta	tionarity	(iv) E	Ergodic	ity			(8)
							-		-	-			
	b.	Consider	the	random	n proo	cess	X(t) = A	$\cos(\omega t + \theta)$), whe	ere	A and	ω	are
		constants	wh	nile θ	is	a	random	variable	with	а	uniform	n	pdf

$$f_{\theta}(\theta) = \begin{cases} \frac{1}{2\pi}, & -\pi < \theta < \pi \\ 0, & \text{otherwise} \end{cases}$$

Show that X(t) is WSS. (8)

- Q.4 a. A discrete memoryless source produces four symbols with probabilities P_1 , P_2 , $P_3 \& P_4$. Show that the entropy of the source is maximum when all the four symbols occur with equal probability. Compute the value of the maximum entropy. (8)
 - b. In a facsimile transmission of a picture, there are about 2.25×10^6 pixels/frame. For a good reproduction 12 brightness levels are necessary. Assume all these levels are equally likely to occur. Find the rate of information if one picture is to be transmitted every 3 Minutes. What is the source efficiency of this facsimile transmitter? (8)

Q.5 a. State & explain Shannon's – Hartley law. Show that
$$\lim_{B\to\infty} C = 1.44 \left(\frac{s}{\eta}\right)$$
. (8)

- b. Define average information, self information, mutual information and channel capacity. Show that I(X, Y) = H(X) + H(Y) H(X, Y). (8)
- Q.6 a. Explain channel diagram, matrix and channel capacity of the following:
 - (i) Binary Symmetric Channel
 - (ii) Binary Erasure Channel
 - (iii) Deterministic Channel
 - (iv) Cascaded Channel

b. A voice grade channel of the telephone network has a bandwidth of 3.4 KHz. Calculate

(i) the capacity of the telephone channel for a $\frac{S}{N}$ ratio of 30 dB.

(ii) the minimum $\frac{S}{N}$ ratio required to support information transmission through the telephone channel at the rate of 4800 bits/Sec. (8)

Q.7 a. How does the error control coding differ from the source coding? Classify the family of error control codes. (4)

(8)

- b. Consider a (6,3) linear block code whose Generator Matrix G is
 - $\mathbf{G} = \begin{bmatrix} 100101\\010110\\001011 \end{bmatrix}$
 - (i) Find all code vectors, their distances & Hamming Weights.
 - (ii) Find minimum weight Parity check matrix.
 - (iii) Draw the encoder circuit for the above code. (12)
- **Q.8** a. A code is composed of dots & dashes. Assuming that a dash is 3 times as long as a dot and has one third the probability of occurrence. Calculate
 - (i) The information in a dot and a dash.
 - (ii) The entropy of a dot-dash code

(iii) The average rate of information if a dot lasts for 10 ms and this time is allowed between the symbols. (4)

- b. A source X has the following message and respected probabilities
 - m₁ 1/16
 - m₂ 1/16
 - m₃ 1/8
 - m₄ 1/4
 - m₅ 1/2

Obtain the Huffman codes and determine its coding efficiency. (8)

c. Show that
$$H(X^2) = 2H(X)$$
. (4)

- Q.9 a. How do burst errors differ from random errors? Explain with an example, how the burst errors could be corrected. (4)
 - b. Consider the (3, 1, 2) convolution code with $g^{(1)} = (110)$, $g^{(2)} = (101)$ & $g^{(3)} = (111)$. (i) Draw the encoder circuit (ii) Find the codeword corresponding to the information sequence (11101). (8)
 - c. Write short note on BCH codes. (4)