ROLL NO.

Code: AE73 Subject: INFORMATION THEORY & CODING

## AMIETE - ET (NEW SCHEME)

Time: 3 Hours

# DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

#### Q.1 Choose the correct or the best alternative in the following:

 $(2 \times 10)$ 

a. PDF of Gaussian distribution is given by

(A) 
$$\frac{1}{\sqrt{2\pi\sigma}} \exp^{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]}$$
 (B)  $\frac{1}{\sqrt{2\pi\sigma}} \exp^{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]}$   
(C)  $\frac{1}{2\pi\sigma} \exp^{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)\right]}$  (D)  $\frac{1}{\sqrt{2\pi\sigma}} \exp^{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)\right]}$ 

b. Entropy of a binary source with probabilities  $[P] = \left[\frac{7}{16}, \frac{9}{16}\right]$  is

| ( <b>A</b> ) 0.389 | <b>(B)</b> 0.689 |
|--------------------|------------------|
| ( <b>C</b> ) 0.989 | <b>(D)</b> 0.589 |

c. One Hartley is \_\_\_\_\_ bits

| ( <b>A</b> ) 1.443 | <b>(B)</b> 2.56 |
|--------------------|-----------------|
| ( <b>C</b> ) 4.23  | <b>(D)</b> 3.32 |

d. For binary code with q symbols and world length  $l_1, l_2, \ldots, l_q$ , Kraft inequality equation becomes

(A) 
$$\sum_{i=1}^{q} 2^{l_i} \le 1$$
  
(B)  $\sum_{i=1}^{q} 2^{-l_i} \le 1$   
(C)  $\sum_{i=1}^{q} \frac{1}{2^{-l_i}} \le 1$   
(D)  $\sum_{i=1}^{l} 2^{-q_i} \le 1$ 

ROLL NO.

Code: AE73 Subject: INFORMATION THEORY & CODING

e. Coding efficiency for source with entropy H(S) and average length L is

| (A) $H(S) \bullet L$ | <b>(B)</b> H(S)-L                                        |
|----------------------|----------------------------------------------------------|
| ( <b>C</b> ) H(S)+L  | ( <b>D</b> ) $\frac{\mathrm{H}(\mathrm{S})}{\mathrm{L}}$ |

f. Mutual information of the channel is

| $(\mathbf{A})\mathbf{H}(\mathbf{A})+\mathbf{H}(\mathbf{A}/\mathbf{B})$ | ( <b>B</b> ) $\frac{\mathrm{H}(\mathrm{A})}{\mathrm{H}(\mathrm{A}/\mathrm{B})}$ |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| $(\mathbf{C})\mathbf{H}(\mathbf{A})-\mathbf{H}(\mathbf{A}/\mathbf{B})$ | <b>(D)</b> $H(A) \bullet H(A/B)$                                                |

g. The channel capacity in infinite bandwidth AWGN is given by \_\_\_\_\_ bits/sec

| (A) $C_{\infty} = B \cdot \frac{S}{N} \log_2 e$        | <b>(B)</b> $C_{\infty} = \frac{1}{B} \frac{S}{N} \log_2 e$ |
|--------------------------------------------------------|------------------------------------------------------------|
| (C) $C_{\infty} = \frac{1}{B} \frac{N}{S} \log_{10} e$ | ( <b>D</b> ) $C_{\infty} = B \frac{S}{N} \log_{10} 2$      |

h. A (n,k) block code consists of \_\_\_\_\_ number of check bits added to k number of information bits.

| (A)          | n+k | <b>(B)</b>  | n   |
|--------------|-----|-------------|-----|
| ( <b>C</b> ) | n/k | <b>(D</b> ) | n-k |

i. Hamming weight of a code vector is the number of \_\_\_\_\_ components of C

| (A) Zero              | ( <b>B</b> ) Non-zero |
|-----------------------|-----------------------|
| (C) Zero and non-zero | ( <b>D</b> ) None     |

j. The generator polynomial g(x) of (n,k) cycle code is a factor of \_\_\_\_\_

| (A) $X^{n} + 1$            | <b>(B)</b> $X^{k} + 1$           |
|----------------------------|----------------------------------|
| ( <b>C</b> ) $X^{n-k} + 1$ | ( <b>D</b> ) X <sup>n+k</sup> +1 |

#### Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

**Q.2** a. Define Joint probability and Marginal probability.

(6)

- b. A random variable binary input x to a communication system takes '0' or '1' with probabilities  $\frac{3}{4}$  and  $\frac{1}{4}$  respectively. Due to noise output y differs from input x occasionally. The behaviour of communication system is modelled by  $P(y = 1 | x = 1) = \frac{3}{4}$  and  $P(y = 0 | x = 0)\frac{7}{8}$ . Find P(y=1) and P(y=0). (6)
- c. A box with 1 dozen balls has 3 red, 4 green and 5 yellow balls. A sample of size 4 is made. The order is  $[R_1, G_2, G_3, Y_4]$ . Find the probability of this event. (4)

2

(8)

## Code: AE73 Subject: INFORMATION THEORY & CODING

- Q.3 a Define probability density function, cumulative distribution function and explain its properties briefly.
   (8)
  - b. A random process X(t) is defined by X(t) = 2cos  $(2\pi t + y)$ , where y is discrete random variable with P(y=0)=  $\frac{1}{2}$  and P(y= $\frac{\pi}{2}$ )=  $\frac{1}{2}$ . Find  $\mu_x(1)$  and R<sub>XX</sub>(0,1).
- Q.4 a. Define entropy and Information rate. (4)
  - b. The output of information source consists of 150 symbols. 32 of which occur with a probability of 1/64 and remaining 118 occur with a probability of 1/236. The source emits 2000 symbols/sec. Assuming that the symbols are chosen independently. Find the average information rate of this source. (6)
  - c. Compute the state probabilities for the state diagram of Markov source shown in Fig.1. (6)



| Q.5 | a. | Define                |                            |     |
|-----|----|-----------------------|----------------------------|-----|
|     |    | (i) Coding efficiency | (ii) Redundancy in coding. | (6) |

- b. Apply Shanon's encoding algorithm to the following message and find Coding efficiency and redundancy.
  Symbols S<sub>1</sub> S<sub>2</sub> S<sub>3</sub>
  Probability 0.5 0.3 0.2 (10)
- Q.6 a. With neat sketch explain discrete Binary symmetric communication channel. Also find its channel matrix. (8)
  - b. Find the channel capacity of a uniform channel where matrix is given.

|                | 0.6 | 0.2 | 0.2 |  |
|----------------|-----|-----|-----|--|
| $P(y_i/x_i) =$ | 0.2 | 0.6 | 0.2 |  |
|                | 0.2 | 0.2 | 0.6 |  |

with  $r_T = 1000$  messages/sec

## Code: AE73 Subject: INFORMATION THEORY & CODING

- Q.7 a. State the Shanon's Hartley law and obtain expression for channel capacity for continuous channel.(8)
  - b. A Gaussian channel has a 10 MHz Bandwidth. If (S/N) is 100, calculate the channel capacity and maximum information rate. (8)
- Q.8 a. The generator matrix for (6,3) block code is given below. Find all code vectors.

$$\mathbf{G} = \begin{bmatrix} 100101\\010011\\001110 \end{bmatrix}$$
(8)

- b. Prove that minimum Hamming weight of a linear block code C is equal to smallest number of column of H-matrix that add up to zero. (8)
- **Q.9** a. The generator polynomial of a cyclic code is  $g(x) = 1+x+x^3$ . Obtain one code vector in non systematic and systematic form. (6)
  - b. For the convolutional encoder diagram as shown in Fig.2, the information sequence is d=10011. Find the output sequence using Time domain approach.
     (10)

