AMIETE - ET (NEW SCHEME)

Time: 3 Hours
DECEMBER 2011
Max. Marks: 100
NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. PDF of Gaussian distribution is given by
(A) $\frac{1}{\sqrt{2 \pi \sigma}} \exp ^{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]}$
(B) $\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]}$
(C) $\frac{1}{2 \pi \sigma} \exp ^{\left[-\frac{1}{2}\left(\frac{\mathrm{x}-\mu}{\sigma}\right)\right]}$
(D) $\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)\right]}$
b. Entropy of a binary source with probabilities $[\mathrm{P}]=\left[\frac{7}{16}, \frac{9}{16}\right]$ is
(A) 0.389
(B) 0.689
(C) 0.989
(D) 0.589
c. One Hartley is \qquad bits
(A) 1.443
(B) 2.56
(C) 4.23
(D) 3.32
d. For binary code with q symbols and world length $1_{1}, 1_{2} \ldots . .1_{q}$, Kraft inequality equation becomes
(A) $\sum_{i=1}^{q} 2^{1_{i}} \leq 1$
(B) $\sum_{i=1}^{\mathrm{q}} 2^{-1_{i}} \leq 1$
(C) $\sum_{i=1}^{q} \frac{1}{2^{-l_{i}}} \leq 1$
(D) $\sum_{i=1}^{1} 2^{-q_{i}} \leq 1$
e. Coding efficiency for source with entropy $\mathrm{H}(\mathrm{S})$ and average length L is
(A) $\mathrm{H}(\mathrm{S}) \bullet \mathrm{L}$
(B) $\mathrm{H}(\mathrm{S})-\mathrm{L}$
(C) $\mathrm{H}(\mathrm{S})+\mathrm{L}$
(D) $\frac{\mathrm{H}(\mathrm{S})}{\mathrm{L}}$
f. Mutual information of the channel is
(A) $\mathrm{H}(\mathrm{A})+\mathrm{H}(\mathrm{A} / \mathrm{B})$
(B) $\frac{\mathrm{H}(\mathrm{A})}{\mathrm{H}(\mathrm{A} / \mathrm{B})}$
(C) $\mathrm{H}(\mathrm{A})-\mathrm{H}(\mathrm{A} / \mathrm{B})$
(D) $\mathrm{H}(\mathrm{A}) \bullet \mathrm{H}(\mathrm{A} / \mathrm{B})$
g. The channel capacity in infinite bandwidth AWGN is given by \qquad bits/sec
(A) $\mathrm{C}_{\alpha}=\mathrm{B} \cdot \frac{\mathrm{S}}{\mathrm{N}} \log _{2} \mathrm{e}$
(B) $\mathrm{C}_{\alpha}=\frac{1}{\mathrm{~B}} \frac{\mathrm{~S}}{\mathrm{~N}} \log _{2} \mathrm{e}$
(C) $\mathrm{C}_{\propto}=\frac{1}{\mathrm{~B}} \frac{\mathrm{~N}}{\mathrm{~S}} \log _{10} \mathrm{e}$
(D) $\mathrm{C}_{\propto}=\mathrm{B} \frac{\mathrm{S}}{\mathrm{N}} \log _{10} 2$
h. A (n, k) block code consists of \qquad number of check bits added to k number of information bits.
(A) $\mathrm{n}+\mathrm{k}$
(B) n
(C) n / k
(D) $\mathrm{n}-\mathrm{k}$
i. Hamming weight of a code vector is the number of \qquad components of C
(A) Zero
(B) Non-zero
(C) Zero and non-zero
(D) None
j. The generator polynomial $\mathrm{g}(\mathrm{x})$ of (n, k) cycle code is a factor of \qquad
(A) $\mathrm{X}^{\mathrm{n}}+1$
(B) $\mathrm{X}^{\mathrm{k}}+1$
(C) $\mathrm{X}^{\mathrm{n}-\mathrm{k}}+1$
(D) $\mathrm{X}^{\mathrm{n}+\mathrm{k}}+1$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Define Joint probability and Marginal probability.
b. A random variable binary input x to a communication system takes ' 0 ' or ' 1 ' with probabilities $\frac{3}{4}$ and $\frac{1}{4}$ respectively. Due to noise output y differs from input x occasionally. The behaviour of communication system is modelled by $P(y=1 \mid x=1)=\frac{3}{4}$ and $P(y=0 \mid x=0) \frac{7}{8}$. Find $P(y=1)$ and $P(y=0)$.
c. A box with 1 dozen balls has 3 red, 4 green and 5 yellow balls. A sample of size 4 is made. The order is $\left[R_{1}, G_{2}, G_{3}, Y_{4}\right]$. Find the probability of this event.
Q. 3 a Define probability density function, cumulative distribution function and explain its properties briefly.
b. A random process $\mathrm{X}(\mathrm{t})$ is defined by $\mathrm{X}(\mathrm{t})=2 \cos (2 \pi \mathrm{t}+\mathrm{y})$, where y is discrete random variable with $\mathrm{P}(\mathrm{y}=0)=\frac{1}{2}$ and $\mathrm{P}\left(\mathrm{y}=\frac{\pi}{2}\right)=\frac{1}{2}$. Find $\mu_{\mathrm{x}}(1)$ and $\mathrm{R}_{\mathrm{XX}}(0,1)$.
Q. 4 a. Define entropy and Information rate.
b. The output of information source consists of 150 symbols. 32 of which occur with a probability of $1 / 64$ and remaining 118 occur with a probability of $1 / 236$. The source emits 2000 symbols/sec. Assuming that the symbols are chosen independently. Find the average information rate of this source.
c. Compute the state probabilities for the state diagram of Markov source shown in Fig.1.

Fig. 1
Q. 5 a. Define
(i) Coding efficiency
(ii) Redundancy in coding.
b. Apply Shanon's encoding algorithm to the following message and find Coding efficiency and redundancy.

Symbols	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
Probability	0.5	0.3	0.2

Q. 6 a. With neat sketch explain discrete Binary symmetric communication channel. Also find its channel matrix.
b. Find the channel capacity of a uniform channel where matrix is given.
$\mathrm{P}\left(\mathrm{y}_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}\right)=\left[\begin{array}{lll}0.6 & 0.2 & 0.2 \\ 0.2 & 0.6 & 0.2 \\ 0.2 & 0.2 & 0.6\end{array}\right]$
with $\mathrm{r}_{\mathrm{T}}=1000 \mathrm{messages} / \mathrm{sec}$
Q. 7 a. State the Shanon's Hartley law and obtain expression for channel capacity for continuous channel.
b. A Gaussian channel has a 10 MHz Bandwidth. If $(\mathrm{S} / \mathrm{N})$ is 100 , calculate the channel capacity and maximum information rate.
Q. 8 a. The generator matrix for $(6,3)$ block code is given below. Find all code vectors.

$$
\mathrm{G}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \tag{8}
\end{array} 1\right.
$$

b. Prove that minimum Hamming weight of a linear block code C is equal to smallest number of column of H -matrix that add up to zero.
Q. 9 a. The generator polynomial of a cyclic code is $g(x)=1+x+x^{3}$. Obtain one code vector in non systematic and systematic form.
b. For the convolutional encoder diagram as shown in Fig.2, the information sequence is $\mathrm{d}=10011$. Find the output sequence using Time domain approach.

