[3862]-171

S.E. (Instrumentation and Control) (First Sem.) EXAMINATION, 2010

FUNDAMENTALS OF INSTRUMENTATION

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- **N.B.** :— (i) Answer three questions from Section I and three questions from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Your answers will be valued as a whole.
 - (vi) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (vii) Assume suitable data, if necessary.

SECTION I

- 1. (a) Explain the requirement and contents of calibration certificate and calibration report in calibration process. [8]
 - (b) What is input, output impedance and loading effect in measurement systems? [8]

2.	(a)	Explain the following terms:	[8]
		(i) Drift	
		(ii) Reproducibility	
		(iii) Dead zone	
		(iv) Hysteresis.	
	(<i>b</i>)	A moving coil voltmeter has a uniform scale with 100 divisio	ns.
		The full scale reading is 200 V and 1/10 of scale division of	an
		be estimated with fair degree of certainty. Determine the resolut	ion
		of the instrument.	[4]
	(c)	A 0.300 V voltmeter has an accuracy of +2% of full sca	ale
		deflection. What would be the range of readings if true volta	age
		is 30 V ?	[4]
3.	(a)	Explain the construction and working of single phase induct	ion
		type energymeter.	[8]
	(<i>b</i>)	Design the Aryton (universal) shunt to provide an ammeter w	ith
		current ranges of 1 A, 5 A and 10 A. A basic meter with inter-	nal
		resistance of 50 W and full scale deflection current of 1 r	nΑ
		is to be used.	[8]

[3862]-171 2

4. (a) For the series type ohmmeter prove that : [8]

where, I_m is the current when measuring the unknown resistance R_x .

 I_{fs} is the full scale deflection current.

 \mathbf{R}_h is the half scale deflection meter.

- (b) Explain how D.C. potentiometer can be used for calibration of voltmeter. [8]
- 5. (a) A resistance bridge has the configuration shown in Fig. 1, in which R_1 = 120.4 W, R_2 = 119.0 and R_3 = 119.7 W:
 - (i) What resistance must R₄ have for balancing of the bridge?
 - (ii) If R₄ has a value of 121.2 and if the input voltage is 12 V d.c., what is the output voltage of the bridge, assuming it to be a voltage sensitive bridge. [8]

- (b) With the help of neat diagram derive the balancing condition in Hay's bridge and explain how it can be used for measurement of quality factor of a coil. [8]
- (c) Differentiate voltage and current sensitive bridges. [2]

Or

6. (a) The Schering bridge as shown in Fig. 2 balances under the following conditions: [10]

$$C_2 = 400 \text{ pf}, R_4 = 10$$

$$R_3 = 1$$
 kW, $C_4 = 100$ pf

The bridge is driven by 1 kHz sine source. Find unknown capacitance C_1 and its internal resistance r_1 . Find the dissipation factor.

- (b) An electrically deflected CRT has a final anode voltage of 2000 V and parallel deflecting plates 1.5 cm long and 5 mm apart. If the screen is 50 cm from the centre of deflecting plates, find:
 - (i) beam speed
 - (ii) the deflection sensitivity of the tube
 - (iii) the deflection factor of the tube

(Mass of electron = 9.1×10^{-31} kg, Charge of electron = 1.6×10^{-19} C)

- (c) In XY mode if the frequency of signal applied to X channel is 200 Hz and Y channel is 100 Hz, then draw the Lissajous pattern obtained on the CRT screen. [2]
- 11. (a) The chart speed of a recording instrument is 10 mm/s. If the time base of the recorded signal is 20 mm, what is the frequency of the recorded signal?
 - (b) How are triangular and sine waves generated in a function generator? [8]

Or

- 12. (a) Explain different marking mechanism used in recorders. [8]
 - (b) Explain the difference between strip chart recorder and X-Y recorder. [8]