CHEMISTRY-I

FULL MARK : 70

Standard data:
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}, \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$, 1
$a m u=1.6605 \times 10^{-27} \mathrm{Kg}$, Atomic weights: $\mathrm{C}=12.000,0=15.9994$.

1.

2×10
a)What is de Broglie relation ?
b)Arrange the following in the increasing order of energy,
(i)IR, (ii) UV-visible, (iii) microwave, and (iv) X-ray.
c) Which of the following pairs is isoelectronic?
(i) N_{2} and CO , (ii) O_{2} and N_{r}, (iii) Li and Be.
d) Which of the following are close close-packed arrangements:
(i) $A B C A B C$. \qquad (ii)ABAC
(iii)ABBA \qquad (iv)ABCCB \qquad ?
e)What is the coordination number of Na^{+}in NaCl crystal ?
f)Which of the following three conditions is valid for a spontaneous reaction;
(i) $\Delta G>0$, (ii) $\Delta G=0,($ iii $) \Delta G<0$?
g)What happens to the entropy of a system at equilibrium?
h)Which of the following conditions will shift the equilibrium of an exothermic reaction towards right :
(i)Lowering , (ii)increasing , or (iii) keeping fixed the temperature?
i)Write down the relation between the rate constant and the temperature of a reaction.
(j)Which of the following relations between the standard free energy change (ΔG^{0}) and E^{0} is correct : (i) $\Delta G^{0}=n F E^{0}$, (ii) $\Delta G^{0}=-n F E^{0}$, (iii) $\Delta G^{0}=n E^{0}$?

2.

(a)For one mole of an ideal gas $T=f(P, V)$. Show that $d T$ is a perfect differential. 3
(b)Show that $\mathrm{Cp}-\mathrm{Cv}=\left[\mathrm{V}-\left[\frac{\partial H}{\partial P}\right]_{\mathrm{r}}\right]\left\{\frac{\partial P}{\partial T}\right\}_{\mathrm{V}}$
(c)A particle is moving with velocity of $65 \times 10^{6} \mathrm{~m} \mathrm{sec}^{-1}$ and the wave length associated with the particle is $50 \times 10^{-12} \mathrm{~m}$. Find out the momentum of the particle.
3.
(a)If dU=TdS-PdV, then show that,

$$
\left(\frac{\partial T}{\partial V}\right)_{s}=-\left(\frac{\partial P}{\partial S}\right)_{V}
$$

(b)Which of the following molecules will be rotationally active and why?
(i) H_{2} (ii) NO (iii) HCl and (iv) F_{2}
(c)Calculate A S,A A , and A G for the vaporization of 2 moles of liquid benzene at its-boiling point of $80.2^{\circ} \mathrm{C}$. Assume ideal gas behavior for the benzene vapour. (Given, the latent heat of vaporization , $\mathrm{L}_{\mathrm{v}}=101 \mathrm{cal} \mathrm{gm}^{-1}$, Mol.wt.of benzene $=78$)

4.

(a)What do you mean by a 'zero order reaction'? What is the activation energy for a reaction?
(b)From the standard reduction potentials:

$$
\begin{array}{ll}
\text { (i) } \mathrm{Ce}^{3+}+3 e \rightarrow C e & E^{0}=-2.48 \mathrm{~V} \\
\text { (ii) } \mathrm{Ce}^{4+}+e \rightarrow \mathrm{Ce}^{3+} & E^{0}=1.61 \mathrm{~V}
\end{array}
$$

Calculate the reduction potential for the half cell $\mathrm{Pt} \mathrm{Ce}, \mathrm{Ce}^{4+}$
(c)For the reaction : $\mathbf{2 N O}+\mathrm{Cl}_{\mathbf{2}} \leftrightarrow \mathbf{2 N O C l}$, following mechanism has been proposed.

Step-1: $\mathrm{NO}+\mathrm{Cl}_{2} \leftrightarrow \mathrm{NOCl}_{2}$;
Step-2 : $\mathbf{N O}+\mathrm{NOCl}_{2} \boldsymbol{\rightarrow} \mathbf{2 N O C l}$
Show that the overall rate of the reaction is : $\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]$, where, $\mathrm{k}=\mathrm{k}_{1} \mathrm{k}_{2} / \mathrm{k}_{-1}$ (assume that $\mathrm{k}_{2},[\mathrm{NO}] \ll \mathrm{k}_{1}$)

5.

(a)Write down the reactions at the following two electrodes as well as the full cell reactions:

$$
\begin{aligned}
& \text { (i) } \mathrm{Fe}\left|\mathrm{Fe}^{2+}\right|\left|\mathrm{Fe}^{2+}-\mathrm{Fe}^{3+}\right| \mathrm{Pt} \\
& \text { (ii) } \mathrm{Zn}\left|\mathrm{ZnO}_{2}{ }^{2-}, \mathrm{OH}-/ \mathrm{HgO}(\mathrm{~s})\right| \mathrm{Hg}
\end{aligned}
$$2

(b)Consider a gaseous decomposition reaction : $A \rightarrow$ Products ,at $500^{\circ} \mathrm{C}$ and at an initial pressure of 350 torr. The rate of the reaction was $1.07{\text { torr } \sec ^{-1} \text { when } 5 \% ~}_{\text {w }}$ of the decomposition was over and 0.76 torr $\sec ^{-1}$ when 20% was over. Determine the order of the reaction.
(c)Write down the Nernst equation and calculate the reduction potential for the reduction of O_{2} at $\mathrm{pH}=7$.

6.

(a)Consider the following esterification reaction.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}, 1$ mole of the acid and 1 mole of the alcohol are mixed at a temperature of $25^{\circ} \mathrm{C}$. At equilibrium, 0.667 moles of the acid have reacted. Calculate the equilibrium constant ,Kc. How much ester would be obtained if $\mathbf{2}$ moles of the acid were mixed with 1 mole of the alcohol under identical condition?
(b)The solubility of a sparingly soluble salt,silver chromate $\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)$ is 7.5×10^{-5} mol lit ${ }^{-1}$.Assuming complete dissociation, calculate the solubility product of the salt.
(c)Draw a schematic phase diagram of the different phases(solid,liquid, and vapour) of a substance. What is a 'triple point'?

7.

(a) 5 moles of monatomic ideal gas are compressed reversibly and adiabatically. The initial volume is $6 \mathrm{dm}^{3}$ and the final volume is $2 \mathrm{dm}^{3}$. The initial temperature is $27^{\circ} \mathrm{C}$.
(i)What would be the final temperature in this process?
(ii)Calculate w, q, and ΔU for the process , Given $C_{v}=20.91 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} .4$
(b)Calculate the energy per photon for radiation of wavelength 650 nm .2
(c) Write down the molecular orbital electronic configuration foe O_{2} and O_{3} and compare the bond length and predict their magnetic property.
8.
(a)Calculate the frequency of the $\mathrm{J}=3 \leftarrow 2$ transition in the pure rotational spectrum of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$. The equilibrium bond length is 112.81 pm .
(b)The wave number of the fundamental vibration of ${ }^{79} \mathrm{Br},{ }^{81} \mathrm{Br}$ is $323.2 \mathrm{~cm}^{-1}$. Calculate the force constant of the bond $\left[\mathrm{m}\left({ }^{79} \mathrm{Br}\right)=78.9183 \mathrm{amu}, \mathrm{m}\left({ }^{81} \mathrm{Br}\right)=80.9163\right.$ amu).
(c)At NTP 2.8 litres of oxygen were mixed with 19.6 litres of hydrogen. Calculate the increase in entropy (Assume ideal gas behaviour).

