Reg. No. _____

Karunya University

(Karunya Institute of Technology and Sciences)

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956)

End Semester Examination – November/December 2010

Subject Title : SOLID STATE CIRCUITS - II Subject Code: EC206 Time : 3 hours Maximum Marks: 100

<u>Answer ALL questions</u> <u>PART – A (10 x 1 = 10 MARKS)</u>

- 1. What is time constant of a circuit?
- 2. What is double ended clipping?
- 3. What is a quasi stable state?
- 4. What is symmetrical triggering?
- 5. Mention an application of monostable multivibrator.
- 6. What is a V to f converter?
- 7. Why are time base generators called sweep circuits?
- 8. What is the advantage of Miller integrator over Bootstrap circuit?
- 9. What is a unidirectional sampling gate?
- 10. What do monostable and astable blocking oscillators generate?

$\underline{PART - B \ (5 \times 3 = 15 \text{ MARKS})}$

- 11. Draw the circuit and output waveforms of a shunt clipper which clips above a reference level.
- 12. Define UTP and LTP of a Schmitt trigger circuit. How can they be varied?
- 13. Explain a method of triggering a monostable multivibrator.
- 14. Mention three different methods of generating a time base waveforms.
- 15. List the various applications of a blocking oscillator.

<u>PART – C (5 x 15 = 75 MARKS)</u>

16.	a.	Explain the operation of a low pass RC circuit. Describe with necessary equations and		
		diagrams its response to a square wave input.	(9)	
	b.	b. Calculate the rise time, time constant and the time to charge fully of a RC circuit with		
		$R = 50 \text{ k}\Omega$ and capacitor $C = 500 \text{pF}$.	(6)	
		(OR)		
17.	a.	Explain with circuit diagram the operation of a positive clamper.	(8)	
	b.	Draw a circuit to transmit the part of a sine wave that lies between $-3V$ to $+6V$.	(7)	
18.	a.	Explain with a circuit diagram, the operation of a Schmitt trigger.	(8)	
	b.	Explain how it can be used as a sine to square wave converter. (OR)	(7)	
19.	a.	a. Describe with a circuit diagram the functioning of a fixed bias bistable multivibrator.(10)		
	b.	Write a note on the commutating capacitors used.	(5)	
20.	Wi mo	<i>ith the help of a circuit diagram and waveforms, explain the working of an emitter cononstable multivibrator.</i>		
		(OR)		
21	Ext	Explain the working of a collector coupled astable multivibrator. Obtain an expression for		

- 21. Explain the working of a collector coupled astable multivibrator. Obtain an expression for frequency of oscillation of the circuit.
- 22. Describe the working of a simple transistor current time base generator.

- 23. Explain the basic principle of a Miller time base generator and explain the working of a transistor Miller time base generator.
- 24. Describe the working of a bidirectional sampling gate using transistors.

(OR)

25. With the help of a circuit diagram and waveforms, explain the working of a triggered transistor monostable blocking oscillator.