III B.Tech I Semester (R07) Regular & Supplementary Examinations, November 2010 COMPUTER GRAPHICS

(Computer Science & Engineering, Information Technology, Computer Science & Systems Engineering, Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. (a) Explain the application areas of computer graphics.
 - (b) Discuss the raster- scan systems in detail.
- 2. (a) Write and explain the ellipse generating algorithm using midpoint.
 - (b) Explain the boundary-fill and flood fill algorithms.
- 3. (a) Discuss the 2- D transformation with example.
 - (b) What is meant by composite transformation? How to generate rotations about any selected pivot point?
- 4. (a) Explain the cyrus- beck line clipping algorithm.
 - (b) Explain the process of window to viewport coordinate transformation.
- 5. (a) What is B-spline curve? What are its properties?
 - (b) Discuss the Phong shading for rendering a polygon surface.
- 6. (a) Explain an algorithm for three-dimensional clipping.
 - (b) Explain the three-dimensional viewing pipeline.
- 7. (a) Explain the back- face detection method.
 - (b) Explain the depth-sorting method for visible surface detection.
- 8. (a) Discuss the different ways of motions specifications.
 - (b) What is animation? Discuss the design of animation sequence.

III B.Tech I Semester (R07) Regular & Supplementary Examinations, November 2010 COMPUTER GRAPHICS

(Computer Science & Engineering, Information Technology, Computer Science & Systems Engineering, Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. (a) Explain the working of Direct- view storage tubes (DVST).
 - (b) Explain the working of Raster- Scan displays.
- 2. (a) Write and explain the mid-point circle algorithm.
 - (b) Compare DDA algorithm and Bresenham's line drawing algorithm.
- 3. (a) Explain reflection and shear transformation obtain a transformation matrix for reflection about the diagonal v=x.
 - (b) Explain the transformation between coordinate systems with example.
- 4. (a) Explain the Sutherland- Hodgeman polygon chipping algorithm.
 - (b) What is meant by workstation transformation? How window- to- viewport transformation is performed?
- 5. (a) Explain the basic Ray- tracing algorithm.
 - (b) Discuss the Hermit curve and its properties.
- 6. (a) Give the transformation matrix, in homogeneous coordinate system, for three dimensional rotation along X, Y,& Z axis.
 - (b) Explain a 3-D reflection and shear transformation.
- 7. (a) Explain the scan- line method for visible surface detection.
 - (b) Explain the BSP tree method for determining object visibility.
- 8. (a) Explain the different techniques for controlling animation with its advantages & disadvantages.
 - (b) Write short note on computer animation languages.

III B.Tech I Semester (R07) Regular & Supplementary Examinations, November 2010 COMPUTER GRAPHICS

(Computer Science & Engineering, Information Technology, Computer Science & Systems Engineering, Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. (a) List and explain the application areas of computer graphics.
 - (b) Explain the differences between Raster-Scan displays and Random-Scan displays.
- 2. (a) Write and explain DDA algorithm for line drawing.
 - (b) Explain the scan -line polygon fill algorithm.
- 3. (a) Derive the transformation matrix for reflection about a line y=-x.
 - (b) Discuss the basic transformations with its homogenous coordinates matrix representation.
- 4. (a) What is clipping? What is use of codes for each endpoint in the Cohen-Sutherland line-clipping algorithm?
 - (b) What is viewing transformation? Explain the two- dimensional viewing transformation pipeline.
- 5. (a) Explain the boundary representation for 3-D graphics object using a set of surface polygons.
 - (b) Explain the parametric continuity conditions to ensure a smooth transition from one section of a curve to the next.
- 6. (a) Explain the three-dimensional viewing pipeline.
 - (b) What is meant by viewing coordinates? How to specify the view plane?
- 7. (a) Explain the area- subdivision method for visible- surface detection.
 - (b) Explain the algorithm for Octrees to get a correct display order for parallel projection.
- 8. (a) Discuss the different ways of motion specifications.
 - (b) Discuss the basic rules of animation and problems peculiar to animation.

III B.Tech I Semester (R07) Regular & Supplementary Examinations, November 2010 COMPUTER GRAPHICS

(Computer Science & Engineering, Information Technology, Computer Science & Systems Engineering, Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1. (a) Explain the working of Flat- panel displays.
 - (b) Explain the working of the following input devices.
 - i. Light pens
 - ii. Joysticks
- 2. (a) Write and explain Bresenham's line drawing algorithm.
 - (b) Explain the boundary -fill and flood- fill algorithm.
- 3. (a) Derive the sealing matrix to generate fixed-point sealing.
 - (b) Show that two successive translations are additive and two successive sealing operations are multiplicative.
- 4. (a) Explain the two-dimensional viewing pipeline.
 - (b) Explain the Cohen-Sutherland line clipping algorithm.
- 5. (a) What is a Bezier curve? What are its properties? Give the Bezier polynomial function.
 - (b) List the polygon shading methods and explain Gouraud shading.
- 6. (a) What is view volume? How it is generated using parallel projection & perspective projection
 - (b) Explain an algorithm for three-dimensional clipping.
- 7. (a) Explain the Warnock's algorithm for visible surface determination.
 - (b) What is meant by List- priority algorithms? Explain the depth- sort algorithm for visible surface determination.
- 8. (a) Explain the steps for an animation sequence.
 - (b) What is meant by key-frame systems? Explain morphing with example.