(a) Compare frequency response of Butterworth, Chebyshev (Type I and Type II) and Elliptical filters.

20

10

10

20

10

10

10

10

10

10

20

- (b) Explain the principle of switched capacitor filter.
- (c) Compare FIR and IIR filters.
- (d) Compare impulse invariant and bilinear transformation methods in IIR filter design.
- 2. (a) Mention design steps of Chebyshev filter. How it differs when "N" is odd and when "N" is even?
 - (b) Explain Gibb's Phenomenon. State its significance in FIR filter design.
- 3. (a) Convert the analog filter with system function : $L'(s) = \frac{s+0\cdot 1}{\left(s+0\cdot 1\right)^2+16}$ into a digital filter (IIR type) by means of the bilinear transformation.

 The digital filter should have a resonant frequency $W_r = \frac{\pi}{2}$.
- 4. (a) S.T. $S = \frac{2}{T} \frac{\left(1-z^{-1}\right)}{\left(1+z^{-1}\right)}$ in bilinear transformation. Also explain mapping between
 - s plane and z plane for BLì.
 - (b) For the given specification $\alpha_{\rm p}$ = 3 dB, $\alpha_{\rm s}$ = 15 dB; $\Omega_{\rm p}$ = 1000 rad/sec and $\Omega_{\rm s}$ = 500 rad/sec design a highpass filter.
- 5. (a) Write Design steps of (FIR) Filter using Kaiser window.
 - (b) Explain concept of adaptive filter and basic blocks required for its design.
- 6. (a) Explain concept of Decimation Interpolation.
 - (b) Determine the order and the poles of a lowpass Butterworth filter that has a 3 dB attenuation at 500 Hz and an attenuation of 40 dB at 1000 Hz.
- 7. Write short notes on any four :-
 - (a) Higher order filters
 - (b) Subband coding
 - (c) Applications of Weiner filter
 - (d) Step invariant method steps in the design of IIR filter
 - (e) Transfer function of 2nd order lowpass analog Butterworth filter.