BE Sem. VII (Rev) ETRX Filter Theory & Applications 18: D-VIIMYD05 COT. 2347-05. (REVISED COURSE) 19/5/05 AM-8432

20

10

10

10

10

(3 Hours)

[Total Marks: 100

Question No. 1 is compulsory. N.B. (1)

346 : D-viiMyp65 Con. 2347-05.

- (2)Attempt any four out of remaining six questions.
- (3) Assumptions made should be clearly stated.
- (4) Assume suitable data wherever required but justify the same.
- (a) A digital filter has pole zero location as shown :

Find steadystate response of system to input $x(n) = 10 \cos (\pi/2n + \pi/3)$.

- (b) Show that zeros of a linear phase FIR filter occur at reciprocal locations and FIR filters of symmetric impulse response. Coefficients and even length will compulsorily have a zero at z = -1.
- Compare IIR and FIR filters. (c)
- (d) Show direct form realization of digital resonator.
- 2. (a) A digital filter has a zero at origin and a pole at 'a', 0 < a < 1. If due to parameter quantization 10 pole shifts to location 'b' where b < a and 0 < b < 1. What is effect on magnitude response at w = 0 and $w = \pi$.
 - A first order system is described by ---(b)

$$y(n) = ay(n - 1) + x(n)$$

Assume that all variables and coefficients are represented in sign magnitude form with results of multiplications truncated before additions are performed Non-linear difference equation implemented is --- $\hat{\mathbf{y}}(n) = \mathbf{Q}[\mathbf{a}\,\hat{\mathbf{y}}(n-1)] + \mathbf{x}(n)$

Where $Q(\cdot)$ represents sign magnitude truncation zero input limit cycle is of the form. y(n) = |y(n - 1)| for all n.

Show that if ideal system is stable, then no zero input limit cycle can exist.

Convert H(s) = $\frac{4}{(s+1)(s^2+4s+5)}$ to H(z) using impulse invariance with ts = 0.5 sec. 3. (a)

- Explain matched z-transform technique. Convert $H(s) = \frac{4}{(s+1)(s+2)}$ to H(z) by matched (b) z-transform and its modifications with ts = 0.5 sec.
- (a) Design a low pass filter with cut off frequency of 5 kHz and sampling frequency of 20 kHz using 10 a Bartlett window.

$$w = 1 - \frac{2|n|}{N-1}, -4, \le n \le 4$$

- Discuss in detail the design procedure of optimal linear phase FIR filter. (b)
- 5. (a) Convert the single pole low pass Butterworth filter with system function -

$$H(z) = \frac{0 \cdot 245 (1 + z^{-1})}{1 - 0 \cdot 509 z^{-1}}$$

into a bandpass filter with upper and lower cut off frequencies of wu and wt respectively. The low pass filter has 3-dB bandwidth of $w_{1} = 0.2 \pi$.

A causal IIR filter has transfer function of -(b)

$$H(z) = \frac{1+2z^{-1}+3z^{-2}+2z^{-3}}{1+0.9z^{-1}-0.8z^{-2}+0.5z^{-3}}$$

Determine the equivalent lattice structure.

[TURN OVER

347 : D-viiMyp65

Con. 2347-AM-8432-05.

6. (a) Determine coefficients of linear phase FIR filter of length M = 15 which has symmetric impulse 10 response and frequency response that satisfies the condition —

$$H_{r}\left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & k = 0, 1, 2, 3\\ 0 & k = 4, 5, 6, 7 \end{cases}$$

(b) A digital low pass filter is required to meet following specifications :— Passband ripple ≤ 1 dB Stopband attenuation ≥ 40 dB Passband Edge 4 kHz Stopband Edge : 6 kHz Sample rate : 24 kHz.

Using Bilinear transformation determine what order Chebyshev, Butterworth and elliptic analog designs must be used to meet specifications in digital implementation.

10

7.	(a)	Discuss the design procedure of Bessel Filters.		10
	(b)	Design an elliptic low pass filter to meet the following specifications :		10
		Ap = 2 dB $Wp = 4 rad/s$		

As = 20 dB Ws = 8 rad/s