N.B. :- (i) Answer any three questions from each Section.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn whenever necessary.
(iv) Figures to the right indicate full marks.
(v) Your answers will be valued as a whole.
(vi) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
(vii) Assume suitable data, if necessary.

SECTION I

(Unit I)

1. (a) State and explain Newton's law of viscosity.
(b) A 0.12 m disc rotates on a table separated by an oil film of 0.018 m thickness. Find the viscosity of oil if the torque required to rotate the disc at 60 r.p.m. is $4 \times 10^{-4} \mathrm{Nm}$. Assume the velocity gradient in the oil film to be linear.
(c) Differentiate between the Eulerian and Lagrangian methods of representing fluid flow.

Or

2. (a) What is capillarity ? Derive expression for height of capillary rise.
(b) Derive the continuity equation in Cartesian coordinates.
(c) Define stream function and velocity potential. Show that the streamlines and equipotential lines form a net of mutually perpendicular lines.

(Unit II)

3. (a) Derive expressions for total pressure and centre of pressure for a vertically immersed surface.
(b) Explain briefly different types of equilibrium of floating bodies.
(c) A solid cube of sides 1 m each is made of a material of relative density 0.5 . The cube floats in a liquid of relative density 0.95 with two of its faces horizontal. Determine its stability. [6]

Or

4. (a) Describe the experimental method of determination of the metacentric height of a floating object.
[6]
(b) A 3.6 m by 1.5 m wide rectangular gate is vertical and is hinged at point 0.15 m below the centre of gravity of the gate. The total depth of water is 10 m . What horizontal force must be applied at the bottom of the gate to keep the gate closed? [10]

(Unit III)

5. (a) State and prove Bernoulli's equation. What are limitations of the Bernoulli's equation ?
(b) Describe an orificemeter and find an expression for measuring discharge of fluid through a pipe with this device.
(c) What is a Pitot tube ? How is it used ?

Or

6. (a) Describe an Venturimeter and find an expression for measuring discharge of fluid through a pipe with this device.
(b) What is a notch ? How are the notches classified ? Find an expression for measuring discharge of fluid across a triangular notch.

SECTION II

(Unit IV)

7. (a) Derive Hagen-Poiseuille equation and state the assumptions made.
(b) Oil of viscosity $0.05 \mathrm{Ns} / \mathrm{m}^{2}$ is flowing between two stationary parallel plates 1 m wide and maintained 10 mm part. The velocity midway between the plates is $3 \mathrm{~m} / \mathrm{s}$. Find :
(i) Pressure gradient along flow
(ii) Average velocity
(iii) Discharge of oil

Or
8. (a) What is dimensional homogeneity ? Explain how dimensional analysis helps in analysis of fluid flow problem.
(b) Explain in brief the Buckinngham p-theorem as method of dimensional analysis.
(Unit V)
9. (a) Derive Darcy-Weisbach formula for calculating loss of head due to friction in pipe.
(b) What is Syphon ? Where is it used ?
(c) Derive an expression for the power transmission through the pipes.

Or

10. (a) What do you mean by Hydraulic Gradient line and Energy Gradient line ?
(b) Define the terms major energy losses and minor energy losses in pipe.
(c) What is an equivalent pipe ?
11. (a) Why is it necessary to control the growth of boundary layer on most of the bodies ? What are the methods for such control ?
(b) How will you determine whether a boundary layer flow is attached flow, detached flow or on the verge of separation ?
(c) What is CFD methodology ?

> Or
12. (a) Define drag force and lift force of an object immersed in a fluid. Distinguish between the friction drag and the pressure drag. [8]
(b) Derive an expression for the lift produced on a rotating cylinder placed in a uniform flow field such that the axis of the cylinder is perpendicular to the direction of flow.
(c) What is Magnus effect ?

