Time : Three Hours
N.B. :- (i) Answer any three questions from each Netion.
(ii). Answers to the two sections should written in separate answer-books.
(iii) Neat diagrams must be drawn ever necessary.
(iv) Figures to the right indica e marks.
(v) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and stea tables is allowed.
(vi) Assume suitable datu it necessary.

SECHON I

1. (a) Plot the stress strain relation of the various fluids in one diagram and sol the behaviour of each fluid under an external shear force.
(b) A soap pubble, 62.5 mm diameter, has an internal pressure in of the outside pressure of $20 \mathrm{~N} / \mathrm{m}^{2}$. What is tension in soap film ?
(c) Neribe various types of flow with examples.
\qquad
2. (a) The space between two square flat parallel plates is filled with oil. Each side of the plate is 720 mm . The thickness of oil film is 15 mm . The upper plate, which moves at $\mathrm{m}^{1 / \mathrm{s}}$ requires a force of 120 N to maintain the speed. Deternme:
(i) The dynamic viscosity of the oil;
(ii) The kinematic viscosity of oil if the specificgravity of oil is 0.95 .
(b) If $\phi=3 x y$, find x and y component of velocity at $(1,3)$ and $(3,3)$. Determine the discharge passing between streamlines passing through these points
(c) Explain the concept of 'Stre mabe with sketch.
3. (a) State and explain Pa cal law.
(b) Derive an expressin for total pressure and center of pressure for inclined plane sy omerged in liquid and hence derive the expression center of pressure for vertical plane.
(c) Define following terms :
(i) Buoyancy

Centre of buoyancy
(ut) Principle of floatation
(iv) Archimedes's Principle.
4. (a) Explain with neat sketch the working of single colump
manometer.
(b) A solid cylinder 2 m in diameter and 2 m high is floand in water with its axis vertical. If the specific gravi y of the material of cylinder is 0.65 , find its metacentric height. State also whether the equilibrium is stable or Utable.
(c) Prove that with usual notations, $\mathrm{BM}_{-}=\frac{1}{\forall}$.
5. (a) State different types of heads liqui in motion.
(b) Derive Bernoulli's equation, usi fist principle.
(c) A $300 \mathrm{~mm} \times 150 \mathrm{~mm}$ ventumeter is provided in a vertical pipeline carrying oil of ecity gravity 0.9 , flow being upward. The difference in eleration the throat section and entrance section of the venvermeter is 300 mm . The differential U-tube mercury anometer shows a gauge deflection of 250 mm . Calculate \square
(i) The discharge of oil, and
(ii) Te pressure difference between the entrance section and throat section.
6. (a) Compare Venturimeter and Orifice-meter.
(b) What is Pitot tube ? Derive an expression for velocity Dras with all labels Pitot Static tube.
[8]
(c) State the assumptions of Bernoulli's equation.

SECTION II

7. (a) Starting from the first principle, derive expression for velocity at distance ' y ' from one fixed play for laminar flow between two parallel fixed plates. find the discharge.
(b) What are repeating variables Wb at points are important while selecting repeating variales ?
8. (a) Laminar flow tak place in a circular tube. At what distance from the bounda does the local velocity equal the average velocity ?
(b) Torque ${ }^{\text {a }}$ propeller depends on density of liquid ρ, viscosity of liquid μ, speed of shaft N rpm, linear velocity V, diameter of the propeller shaft D. Buckingham π-theorem, show that :

$$
\begin{equation*}
T=\rho N 2 D^{5} \Phi\left(N D / V, \rho N D^{2} / \mu\right) \tag{8}
\end{equation*}
$$

9. (a) Derive an expression for the power transmission through the pipes. Find also the condition for maximum transmission of power.
(b) Two reservoirs, having a difference in elevation of 15 connected by a 200 mm diameter siphon. The length of the
siphon is 400 mm and the summit is 3 m above th water level in the upper reservoir. The length of the pipe from upper reservoir to the summit is 120 m . If the coef cient ofriction is 0.005 , determine :
(i) Discharge through the siphon, and
(ii) Pressure at the summit.

Neglect minor losses.

$$
5
$$

(c) Explain briefly the following :
(i) Hydraulic Grade Line (HGL)
(ii) Energy Grade Line
10. (a) In a 80 mm diameter ipeline an oil of specific gravity 0.8 is flowing at the rate of $6.0125 \mathrm{~m}^{3} / \mathrm{s}$. A sudden expansion takes place into as and pipeline of such diameter that maximum pressure ris is obtained. Find :
(i) Loss of energy in sudden expansion;
(ii) Rifferential gauge length indicated by an oil-mercury ${ }^{2}$ mometer connected between the two pipes.
(b) Herive Dupit's equation.
(c) Nxpain major and minor losses occurred in pipe.
11. (a) Distinguish clearly between hydrodynamically smooth and rough boundaries.
(b) State the practical importance of the following boundary lay thickness :
(i) Displacement thickness
(ii) Momentum thickness.
(iii) Energy thickness.

[6]
(c) Air blows over a cylinder of diameter 60 mm dinite length with a velocity of $0.12 \mathrm{~m} / \mathrm{s}$. Find the kal drag, shear drag and pressure drag on 1 m length of cylinder if the total drag and shear drag coefficien are 1.25 and 0.18 respectively. Take density of air $=1.25 \mathrm{~N} / m$.
12. (a) Explain the significan of the boundary layer concept in fluid mechanics.
(b) Explain develgpmen fully developed turbulent flow in circular pipes with statches.
(c) Define 'dof attack' for an aerofoil. Explain its significance clearly.

