Set No. 3

Code No: R059210401

II B.Tech I Semester Regular Examinations, November 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS

(Common to Electronics & Communication Engineering, Electronics & Telematics and Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define probability based on set theory and fundamental axioms.
 - (b) When two dice are thrown, find the probability of getting the sums of 10 or 11. [8+8]
- 2. (a) Define cumulative probability distribution function. And discuss distribution function specific properties.
 - (b) The random variable X has the discrete variable in the set $\{-1, -0.5, 0.7, 1.5, 3\}$ the corresponding probabilities are assumed to be $\{0.1, 0.2, 0.1, 0.4, 0.2\}$. plot its distribution function and state is it a discrete or continuous ditribution function. [8+8]
- 3. (a) Explain the concept of a transformation of a random variable X
 - (b) A Gaussian random variable X having a mean value of zero and variance one is transformed to an another random variable Y by a square law transformation. Find the density function of Y. [8+8]
- 4. Discrete random variables X and Y have a joint distribution function $F_{XY}(x,y) = 0.1u(x+4)u(y-1) + 0.15u(x+3)u(y+5) + 0.17u(x+1)u(y-3) + 0.05u(x)u(y-1) + 0.18u(x-2)u(y+2) + 0.23u(x-3)u(y-4) + 0.12u(x-4)u(y+3)$ Find
 - (a) Sketch $F_{XY}(x,y)$
 - (b) marginal distribution functions of X and Y.
 - (c) $P(-1 < X \le 4, -3 < Y \le 3)$ and
 - (d) Find $P(X < 1, Y \le 2)$. [4+6+3+3]
- 5. (a) let $Y = X_1 + X_2 + \dots + X_N$ be the sum of N statistically independent random variables X_i , $i=1,2,\dots$ N. If Xi are identically distributed then find density of Y, $f_y(y)$.
 - (b) Consider random variables Y_1 and Y_2 related to arbitrary random variables X and Y by the coordinate rotation. Y_1 =X Cos θ + Y Sin θ Y_2 = -X Sin θ + Y Cos θ
 - i. Find the covariance of Y_1 and Y_2 , C_{Y1Y2}
 - ii. For what value of θ , the random variables Y_1 and Y_2 uncorrelated. [8+8]

Set No. 3

- 6. (a) Define cross correlation function of two random processes X(t) and Y(t) and state the properties of cross correlation function.
 - (b) let two random processes X(t) and Y(t) be defined by
 - $X(t) = A \cos \omega_0 t + B \sin \omega_0 t$
 - $Y(t) = B \cos \omega_0 t A \sin \omega_0 t$

Where A and B are random variables and ω_0 is a constant. Assume A and B are uncorrelated, zero mean random variables with same variance. Find the cross correlation function R_{XY} (t,t+ τ) and show that X(t) and Y(t) are jointly wide sense stationary. [6+10]

- 7. (a) If the PSD of X(t) is $Sxx(\omega)$. Find the PSD of $\frac{dx(t)}{dt}$
 - (b) Prove that S_{xx} (ω) = S_{xx} (- ω)
 - (c) If $R(\tau) = ae^{|by|}$. Find the spectral density function, where a and b are constants. [5+5+6]
- 8. (a) A Stationary random process X(t) having an Auto Correlation function $R_{XX} \tau = 2e^{-4|\tau|}$ is applied to the network shown in figure 8a find
 - i. S_{XX} (ω)
 - ii. $IH(\omega)I^2$
 - iii. $S_{YY}(\omega)$.

[4+4+2]

Figure 8a

(b) Write short notes on different types of noises.

[6]
