Code No: R059210401

II B.Tech I Semester Regular Examinations, November 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS

(Common to Electronics & Communication Engineering, Electronics & Telematics and Electronics & Computer Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define and explain the following with an example:
 - i. Equally likely events
 - ii. Exhaustive events
 - iii. Mutually exclusive events
 - (b) Give the classical definition of probability.
 - (c) Find the probability of three half-rupee coins falling all heads up when tossed simultaneously. [6+4+6]
- 2. (a) What is poisson random variable? Explain in brief.
 - (b) What is binomial density and distribution function?
 - (c) Assume automobile arrives at a gasoline station are poisson and occur at an average rate of 50/hr. The station has only one gasoline pump. If all cars are assumed to require one minute to obtain fuel. What is the probability that a waiting line will occur at the pump? [5+5+6]
- 3. (a) Define moment generating function.
 - (b) State properties of moment generating function.
 - (c) Find the moment generating function about origin of the Poisson distribution. [3+4+9]
- 4. Given the function $f(x,y) = \begin{cases} (x^2 + y^2)/8\pi & x^2 + y^2 < b \\ 0 & elsewhere \end{cases}$
 - (a) Find the constant 'b' so that this is a valid joint density function.
 - (b) Find $P(0.5b < X^2 + Y^2 < 0.8b)$. [7+9]
- 5. Three statistically independent random variables X_1, X_2 and X_3 have mean values $\bar{X}_1 = 3$, $\bar{X}_2 = 6$ and $\bar{X}_3 = -2$. Find the mean values of the following functions.
 - (a) $g(X_1, X_2, X_3) = X_1 + 3X_2 + 4X_3$
 - (b) $g(X_1, X_2, X_3) = X_1 X_2 X_3$
 - (c) $g(X_1, X_2, X_3) = -2X_1, X_2, -3X_1, X_3 + 4X_2, X_3$
 - (d) $g(X_1, X_2, X_3) = X_1 + X_2 + X_3.$ [16]

Code No: R059210401

Set No. 4

6. Statistically independent zero mean random processes X(t) and Y(t) have auto correlations functions

$$R_{XY}(\tau) = e^{-|\tau|}$$
 and

 $R_{YY}(\tau) = \cos(2\Pi\tau)$ respectively.

- (a) find the auto correlation function of the sum $W_1(t) = X(t) + Y(t)$
- (b) find the auto correlation function of difference $W_2(t) = X(t) Y(t)$
- (c) Find the cross correlation function of $W_1(t)$ and $W_2(t)$. [5+5+6]
- 7. (a) Find the ACF of the following PSD's

i.
$$S_{\chi\chi}(\omega) = \frac{157+12\omega^2}{(16+\omega^2)(9+\omega^2)}$$

ii. $S_{\chi\chi}(\omega) = \frac{8}{(9+\omega^2)^2}$

ii.
$$S_{\chi\chi}(\omega) = \frac{8}{(9+\omega^2)^2}$$

(b) State and Prove wiener-Khinchin relations.

[8+8]

- 8. A random noise X(t) having power spectrum $S_{XX}(\omega) = \frac{3}{49+\omega^2}$ is applied to a to a network for which $h(t) = u(t)t^2 \exp(-7t)$. The network response is denoted by Y(t)
 - (a) What is the average power is X(t)
 - (b) Find the power spectrum of Y(t)
 - (c) Find average power of Y(t).

[5+6+5]
