BE|ETRX|Sem VII |REV VLSI Design

Con. 6040-10.

teg 2 30 To

(REVISED COURSE)

14 112/10 GT-8820

20

10

10 10

10

10

(3 Hours)

[Total Marks : 100

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions out of question nos. 2 to 7.
 - (3) Draw neat diagrams wherever required.
- 1. (a) Compare Ion Implantation and Diffusion.
 - (b) Explain constant field scaling in MOS Device.
 - (c) Draw stick Diagram for CMOS Invertor.
 - (d) Implement function using CMOS $f = \overline{ab + abc + a}$
- 2. (a) Explain Twin tub process in detail.
 - (b) Calculate the threshold voltage V_{TO} at V_{SB} or a polysilicon gate N-channel MOS transistor, with the following parameters:

Substrate doping density $N_A = 10^{16}$ cm⁻³, Polysilicon gate dopping density $N_O = 2 \times 10^{20}$ cm⁻³,

Gate oxide thickness tox = 300°A and

Oxide interface fixed charge density $Nox = 4 \times 10^{10} \text{ cm}^{-2}$.

- 3. (a) Draw circuit of 2 input NAND gate, stick Diagram and Layout.

 (b) For a CMOS invertor find the region of operation :—
 - (i) $V_{in} < V_{th}$
 - (ii) $V_{in} > C_{DD} + V_{tp}$
 - (iii) $V_{in} = V_{IL}$
 - (iv) $V_{in} = V_{IH}$
 - (v) V_{in} = switching threshold.
- 4. (a) Compare resistive, Enhancement, Depletion load NMOS and CMOS invertor.
- (b) Consider a CMOS invertor with the following parameters :— NMOS $V_{TO,n} = 0.6 \text{ V}$, $\mu_n \text{ Cox} = 60 \text{ } \mu\text{A/V}^2 \text{ and } (\text{W/L})_n = 8 \text{ } 0.00 \text{ } 0.$

PhOS $V_{TO,P} = -0.7 \text{ V}, \qquad \mu_p \text{ Cox} = 25 \, \mu\text{A/V}^2 \text{ and } (\text{W/L})_p = 12$

Calculate the noise margins and the switching threshold (Vth) of this circuit. The power supply voltage is $V_{DD} = 3.3 \text{ V}$.

- 5. (a) Write Verilog code of 1 Bit full adder using any style and instantiate it to design a **10** 4 Bit full Adder.
 - (b) Explain the method to design 4:1 MUX using pass transistor logic. Draw complete 10 stick diagram.

5.	(a)	Write Verilog code of 1 Bit full adder using any style and instantiate it to design a 4 Bit full Adder.	10
	(b)	Explain the method to design 4:1 MUX using pass transistor logic. Draw complete stick diagram.	10
6.	(a)	Explain short channel effect in terms of :— (i) Velocity Saturation. (ii) Mobility Degradation. (iii) Channel Length Modulation. (iv) Threshold Voltage. (v) Hot Electron Effect.	15
	(b)	An NMOS transistor with $I = 20~\mu\text{A}/\text{V}^2$ and $V_{TH} = 1.5\text{V}$ is operated at $V_{GS} = 5\text{V}$ and $I_D = 100~\mu\text{A}$. Find V_{DS} .	5
7.	Atte	empt any three :———————————————————————————————————	20

Generate Verilog code for 4 Bit Shift Register.