Con. 6581-11.

(OLD COURSE)

MP-6157

(3 Hours)

[Total Marks: 100

NOTE:-(1) Que no 1 is compulsory.

- (2) Out of remaining six questions solve any four.
- (3) Each question carries 20 marks and sub-questions carry equal marks.
- (4) Assume suitable data if required.
- (5) Useful physical constants are given in following table.

Name	Symbol	Value	Units
Boltzmann's constant	k	1.38 ×10 ⁻²³	J/K
Dielectric constant of vacuum	ε ₀	8.854 × 10 ⁻¹⁴	F/cm
Dielectric constant of Silicon	εsi	11.7 χ ε ₀	F/cm
Dielectric constant of SiO ₂	εοх	3.97 <mark>Χε_ο</mark>	F/cm
Intrinsic carrier	ni	1.45×10^{10}	cm ⁻³
concentration of silicon		at 27 °c	

- Que 1. (A) Draw CMOS 2 input NOR gate and explain its working.
 - (B) Write short notes on Latch up in CMOS.
- Que 2. (A)Calculate the zero-bias threshold voltage for an NMOS Silicongate transistor that has well doping = 3×10^{15} ,gate doping = ND = 10^{20} cm⁻³ , gate-oxide thickness = 250 A^{0} , and 3×10^{10} / cm² singly charged positive ions at the oxide-Silicon interface. Also calculate the ion- implant doses needed to achieve a threshold voltage of -1 V.
- (B) Write short notes on butting and buried contacts in NMOS circuits.
- Que3. Draw a circuit diagram, stick diagram of CMOS inverter and its mask layout considering lambda based design rules.

- (B) Write short notes on butting and buried contacts in NMOS circuits.
- Que3. Draw a circuit diagram, stick diagram of CMOS inverter and its mask layout considering lambda based design rules.
- Que4. (A) Write short notes on, "Testing of Integrated circuits".

 (B) Explain Oxidation process in silicon semiconductor technology.
- Que5. (A) Draw CMOS transmission gate and explain its working.

 (B) Explain full scaling in VLSI.
- Que6. (A) Write short notes on FET capacitance.
 - (B) Draw circuit diagram and stick diagram of 4:1 multiplexer using enhancement mode devices and explain its operation.
- Que 7. Discuss the processing sequence of a p-well CMOS inverter with the help of cross-sectional views.