## Entrance Examination, 2004 M.Sc. (Statistics-OR)

|                 |  |      |          | <br> |
|-----------------|--|------|----------|------|
| Hall Ticket No. |  | <br> | <u> </u> |      |

Time: 2 hours

Max. Marks: 100

Part A: 25 Part B: 75

Instructions

1. Calculators are not allowed.

- Part A carries 25 marks. Each correct answer carries 1 mark and each wrong answer carries 1/4 mark.
   So do not gamble. If you want to change any answer, cross out the old one and circle the new one. Over written answers will be ignored.
- 3. Part B carries 75 marks. Instructions for answering Part B are given at the beginning of Part B.
- Do not detach any page from this answer book. It contains 18 pages in addition to this top page. Pages 15 to 18 are for rough work.

Answer Part A by circling the correct letter in the array below:

|   |    | ;C1 |   | eu  | • | ^* |    | _ | 611      | _ | _ | - |  |
|---|----|-----|---|-----|---|----|----|---|----------|---|---|---|--|
| 1 | 1  | a   | , | b   |   | С  |    | ( | d        | 6 |   |   |  |
| 2 | 2  | а   |   | b   | , | •  |    | • | d        | 6 |   |   |  |
|   | 3  | а   | ı | b   | , |    | С  |   | d        |   | 3 |   |  |
| 4 | 4  | a   | ı | b   | ) | _  | c_ | _ | d        | • | е |   |  |
|   | 5  | 8   | 1 | t   | ) | L  | c  | L | <u>d</u> | L | е |   |  |
| ( | 6  | T   | a | ]   | b | T  | С  |   | d        |   | e |   |  |
| , | 7  |     | a | 1   | b |    | С  |   | d        |   | е |   |  |
|   | 8  |     | a |     | b |    | С  |   | d        |   | е | e |  |
|   | 9  | T   | a |     | b |    | С  |   | d        |   | е |   |  |
|   | 10 |     | a |     | b |    | С  |   | d        | d |   |   |  |
|   | 11 | T   | a |     | b |    | c  | c |          | d |   | ] |  |
|   | 12 | †   | a | 1   | b |    | С  | С |          | d |   | 1 |  |
|   | 13 |     | a |     | b |    | c  |   | d        |   | е |   |  |
|   | 14 |     | a | 1   | b |    | c  |   | d        | d |   |   |  |
|   | 15 |     | a | I   | b |    | C  | С |          |   | e |   |  |
|   | 16 |     | a | b   |   | •  | (  | С |          | d |   |   |  |
|   | 17 |     | a | ı b |   | )  | С  |   | d        | d |   |   |  |
|   | 18 |     | a | ı t |   | )  | c  |   | d        | d |   |   |  |
|   | 19 |     | a | ı b |   | )  | С  |   | C        | d |   | : |  |
|   | 20 |     | а | ı l |   | )  | c  |   | C        | d |   | е |  |
|   | 21 |     | 8 | a   |   | b  |    | С |          | d |   | e |  |
|   | 22 |     | E | a   |   | ь  |    | c |          | d |   | е |  |
|   | 23 |     | a |     | b |    |    | С |          | d |   | e |  |
|   | 24 |     | į | a   |   | b  |    | С |          | d |   | е |  |
|   | 25 |     |   | a   |   | b  |    | С |          | d |   | е |  |



## PART-A

Find the correct answer and mark it on the answer sheet on the top page. A correct answer gets 1 mark and a wrong answer gets a -(1/4) mark.

- 1. The standard deviation of marks of 100 students is 13. Every student is later awarded 5 more marks. The standard deviation of the new set of marks is
  - (a) 13
  - (b) 18
  - (c)  $13 + \sqrt{5}$
  - (d) 13 √5
  - (e) none of the above.
- 2. The event A occurs whenever the event B occurs, then for any event  $C \neq \phi$ 
  - (a) P(C|A) > P(C|B)
  - (b) P(C|A) = P(C|B)
  - (c) P(C|A) < P(C|B)
  - (d)  $P(C|A^C) < P(C|B^C)$
  - (e) none of the above.
- 3.  $P(A \cup B) = 0.9$ ; P(A) = 0.5; P(B) = 0.7, then  $P(A \mid B^C)$ 
  - (a) is 1/2
  - (b) is 1/3
  - (c) is 3/4
  - (d) is 2/3
  - (e) can not be determined using the information given.
- 4. A box contains four balls numbered 1,2,3,4. Three balls are drawn at random, without replacement and arranged in increasing order of their numbers. The probability that ball number 3 is in the second place is
  - (a) 1
  - (b) 1/2
  - (c) 0
  - (d) 1/3
  - (e) none of the above.

- 5. Two numbers are selected at random from  $\{1,2,\ldots,100\}$  say  $N_1$  and  $N_2$ . The probability of the event  $A = \{N_1N_2 > \frac{1}{4} (N_1+N_2)^2\}$  is
  - (a) 1
  - (b) 1/2
  - (c) 1/3
  - (d) 0
  - (e) 2/3.
- 6. Three points are marked on a circle. The probability that the triangle got by these points is obtuse is
  - (a) 1/3
  - (b) 1/4
  - (c) 1/2
  - (d) 1/6
  - (e) 1/8.
- 7. Three people A,B,C are playing a game. To make a move the player needs to toss a fair coin and it should show heads, other wise it goes to the next player. If A is first to toss, then it is the turn of B and then of C. The probability that C will be the first one to make a move is
  - (a) 1/2
  - (b) 4/7
  - (c) 3/7
  - (d) 2/7
  - (e) 1/7.
- 8. A machine is in a working state if a least one of the components  ${\rm C_1,C_2,C_3}$  is working. At any given time the probabilities of  ${\rm C_1,C_2}$  and  ${\rm C_3}$  working are 1/3, 1/4 and 1/6 respectively. The probability that the machine is in a working state at any given time is
  - (a) not more than 3/4
  - (b) not less than 3/4
  - (c) equal to 1/2
  - (d) equal to 71/72
  - (e) equal to 1/72

- 9.  $X \sim B(16, 1/2) E(X(X-1)(X-2)(X-3))$  is
  - (a) 16x15x14
  - (b) 15x14x12
  - (c) 16x15x14x13
  - (d) 16x15
  - (e) 15x14x13
- 10.  $P(X = a) = \frac{1}{7}$ ,  $a \in \left\{ \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, 2, 3, 4 \right\}$ ,  $E\left(\frac{X^2 1}{X}\right)$  is
  - (a) 0
  - (b) 1
  - (c) ∞
  - (d) between 2 and 3
  - (e) more than 1 and less than 2.
- 11. X and Y are two random variables and E(X|Y=y) < 0 for all values of y. Then
  - (a) E(X) > 0
  - (b) E(X) < 0
  - (c) E(X) = 0
  - (d) X and Y are uncorrelated
  - (e) none of the above.
- 12.  $X \sim N(1,1)$ ;  $Y \sim N(2,2)$  and are independent. Then X+Y
  - (a) is not a symmetric random variable and has expected value 3
  - (b) is not a symmetric random variable and its expected value is not 3
  - (c) has mean 3 and is symmetric about it
  - (d) is not symmetric and has variance 3
  - (e) none of the above.
- 13. A box contains N balls numbered 1,...,N, N is not known. n balls are drawn without replacement, suppose their numbers are  $x_1, x_2, \ldots, x_n$ . The Maximum Likelihood Estimator (MLE) of N is

(a) 
$$\frac{x_1 + \dots + x_n}{n}$$

- (b)  $x_{(n)} = \max\{x_1, x_2, \dots, x_n\}$
- (c)  $x_{(1)} = \min\{x_1, \dots, x_n\}$
- (d)  $\frac{x_{(1)}^{+x}(n)}{2}$
- (e) none of the above.

- 14.  $X_1, X_2, X_3$  is a random sample from the Bernoulli distribution B(p), i.e.,  $P(X_i = 1) = p$ ;  $P(X_i = 0) = 1-p$ , 0 i = 1,2,3 and they are independent. Which of the following is sufficient for p?
  - (a)  $x_1^2 + x_2^2 + x_3^2$
  - (b)  $X_1 + 2X_2 + X_3$
  - (c)  $2X_1 X_2 X_3$
  - (d)  $X_1 + X_2$
  - (e)  $3\bar{x}_1 + 2\bar{x}_2 4\bar{x}_3$
- 15. The four places in a 2x2 matrix are 0 or 1 according as the outcome of a toss fo a fair coin is tails or heads respectively. The probability that A is singualr is
  - (a) 1/8
  - (b) 3/8
  - (c) 5/8
  - (d) 7/8
  - (e) none of the above.
- 16. The set  $A = \{x; 2 < |x-2| < 4, x \in \mathbb{R}\}$  is
  - (a) an open interval
  - (b) a closed interval
  - (c) empty
  - (d) an open set
  - (e) a closed set.
- 17. The set  $C = \{(x,y); 2x^2 4x + 3y^2 6y + 8 = 0, x \in \mathbb{R}, y \in \mathbb{R}\}$  is
  - (a) the interior of a circle
  - (b) the interior of an ellipse
  - (c) an ellipse
  - (d) a circle
  - (e) none of the above.

18. 
$$\left[2\binom{2n}{2} + 4\binom{2n}{4} + \ldots + 2n\binom{2n}{2n}\right] - \left[\binom{2n}{1} + 3\binom{2n}{3} + \ldots + (2n-1)\binom{2n}{2n-1}\right]$$

$$\left(\text{where } \binom{n}{r}\right) = n_{C_r} \text{ is equal to}$$

- (a) 0
- (b) 1
- (c) 2<sup>n</sup>
- (d)  $3^n$
- (e) none of the above.

19. The rank of the matrix

$$\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 & 2 \\
1 & 1 & 0 & 0 & 2 \\
0 & 1 & 1 & 1 & 3
\end{array}\right) is$$

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5.
- 20. A and B are two nxn matrices, which of the following is not always true?
  - (a) A+B = B+A
  - (b) Trace(A+B) = Trace(B+A)
  - (c) Trace(AB) = Trace(BA)
  - (d) Rank(-AB) = Rank(AB)
  - (e) Rank(AB) = Rank(A).
- 21.  $\lim_{x\to 0} \frac{\sin x}{x}$ 
  - (a) is 0
  - (b) is 1
  - (c) does not exist
  - (d) is -1
  - (e) is none of the above.
- 22.  $\lim_{n\to\infty} \frac{2^n}{n!}$ 
  - (a) is 1/2
  - (b) is 1
  - (c) is 2
  - (d) does not exist
  - (e) none of the above.
- 23. The function |x| x,  $x \in \mathbb{R}$  is
  - (a) increasing and not continuous at 0.
  - (b) decreasing and not continuous at 0.
  - (c) decreasing and continuous everywhere.
  - (d) increasing and continuous everywhere.
  - (e) none of the above.

- 24. The value of  $\int_0^\infty e^{-x^2} dx$  is
  - (a)  $\sqrt{2\pi}$
  - (b) √π
  - (c)  $\frac{\sqrt{\pi}}{2}$
  - (d)  $\sqrt{\frac{\pi}{2}}$
  - (e)  $2\sqrt{\pi}$ .
- 25. The negation of the statement, "Ramesh and Suresh missed the bus" is
  - (a) neither Ramesh nor Suresh missed the bus
  - (b) at least one of them missed the bus
  - (c) at most one of them did not miss the bus
  - (d) at least one of them did not miss the bus
  - (e) at most one of the missed the bus.

## PART-B

There are 15 questions in this part. Each question carries 5 marks. Answer as many as you can. The maximum you can score is 75 marks. Brief proofs are needed for each question in the place provided below the question.

- 1. A boy has ten 1 rupee coins, five 2 rupee coins and two 5 rupee coins in his pocket (all the coins are similar in size). He has to buy a pen which costs Rs. 4/-. He takes out two coins from his pocket. Compute
  - (i) the probability of taking out enough to buy the pen.
  - (ii) the probability of taking out enough to buy the pen with only one of the coins.
  - (iii) the probability of taking out exactly the amount needed to buy the pen.
  - (iv) the probability of not taking out enough to buy the pen.

2. A child dropped a key in one of the 3 shelves  $S_1, S_2$  or  $S_3$  but now does not remember in which he dropped it. The shelves are cluttered and finding a small key in them is very difficult. The probability of finding the key in  $S_1$  if it is there is 1/10, that of finding it in  $S_2$  if it is dropped there is 1/20 and finding it in  $S_3$  if it is dropped there is 1/30.  $S_2$  was searched and the key was not found, evaluate the probabilities that the key is in (i)  $S_1$  (iii)  $S_2$  (iii)  $S_3$ .

3. X is a non-negative random variable for which  $P(X>x) = e^{-5x} x > 0$ .

(a) Determine the distribution of  $Y = e^{-5X}$  (b) Evaluate its mean and variance.

- 4. There are 75 multiple choice questions with 5 alternatives in an examination. A candidate knows the correct answers to only 15 of them and decides to just randomly mark one of the alternatives. A correct answer in this examination gets +1 marks and a wrong answer get -1/4 marks for the candidate.
  - (a) What are the expected marks of this candidate.
  - (b) What can you say about the probability of his marks being less than 10 or greater than 20.
  - (c) Evaluate the probability that this candidate will get more than 30 marks (you can use the suitable approximation).

- 5. A bag contains 100 balls numbered 1,2,...,100. A ball is drawn at random, replaced and then again a ball is drawn. Denote the numbers on them by  $X_1$  and  $X_2$  respectively. Evaluate
  - (a)  $P(X_1 = X_2)$
  - (b)  $P(X_1 > X_2)$
  - (c)  $P(X_1+X_2 = 33)$ .

- 6. (a) Are uncorrelated random variables always independent?
  - (b)  $X \sim U(-2,2)$ , compute the corelation coefficient between X and Y = |X|.

7. Let X be a random variable with probability density function (pdf) f(.) and cumulative distribution function (cdf) F(.).  $X_1, X_2, \ldots, X_n$  is a random sample from this population. Let  $N_x$  = number of observations in the sample that are less than or equal to x. (a) Derive the distribution of  $N_x$  (b) Compute its mean and variance.

8.  $X_1$  and  $X_2$  are independent Poisson ( $\lambda$ ) random variables. Let  $T(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}. \quad \text{Find } T^*(t) = \cdot E(T(X_1) | X_1 + X_2 = t) \text{ and then}$ evaluate E(T\*).

9. Consider the following hypotheses:

 $H_0$ : X is Poisson with parameter  $\lambda = 1/2$ 

$$H_0$$
: X is roisson with parameter X =  $H_1$ : P(X = x) =  $\frac{1}{2^{x+1}}$  x = 0,1,2,...

- (a) Classify these hypotheses as simple or composite.
- (b) How will you test  $H_0$  against  $H_1$  at  $\alpha$  level of significance based on a sample of size n. Will your cricitcal region be the "best critical region"? Give reasons.

10.  $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$  be iid random variables with common pdf given by

$$f(x,e) = \frac{1}{e} x^{\frac{\Theta-1}{\Theta}} 0 < x < 1 \quad e>0.$$
 Find the MLE for e and verify whether it is unbiased for it.

- Find the value of  $\sum_{k=0}^{n} \sum_{j=0}^{n-k} \frac{(-1)^{j} n!}{j! \, k! \, (n-j-k)!}$ 11. (a)
  - (b) Prove that  $\begin{pmatrix} 2n \\ n \end{pmatrix} = \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix}^2$ .

12. Find conditions on a,b and c such that 
$$f(x) = ax^2 + bx + c \ge 0 \quad \forall \ x \in \mathbb{R}.$$

- 13. Consider the set A =  $\left\{\frac{(-1)^n}{n}, n=1,2,\ldots\right\} \cup \left\{\frac{(-1)^{n-1}}{n-1}, n=1,2,\ldots\right\}$ .
  - (a) Find its greatest lower bound and least upper bound.
  - (b) Do they lie in A?
  - (c) Does A have limit points?

- 14. (a) Display the set A  $\Delta$  B the symmetric difference of A and B by a Ven diagram.
  - (b) Prove that  $(A \triangle B) \triangle C = A \triangle (B \triangle C)$ .
  - (c)  $U = \{1, 2, ..., 100\}$ ; A = all even numbers in U, B = all multiples of 3 in U. Identify  $A \triangle B$ .

15. Shade the region  $R_1 \cap R_2$  in  $\mathbb{R}^2$  where  $R_1 = \left\{ (x,y); |x-2| \le 1, |y-1| \le 2 \right\}, R_2 = \left\{ (x,y); y = x^2-1 \right\}.$