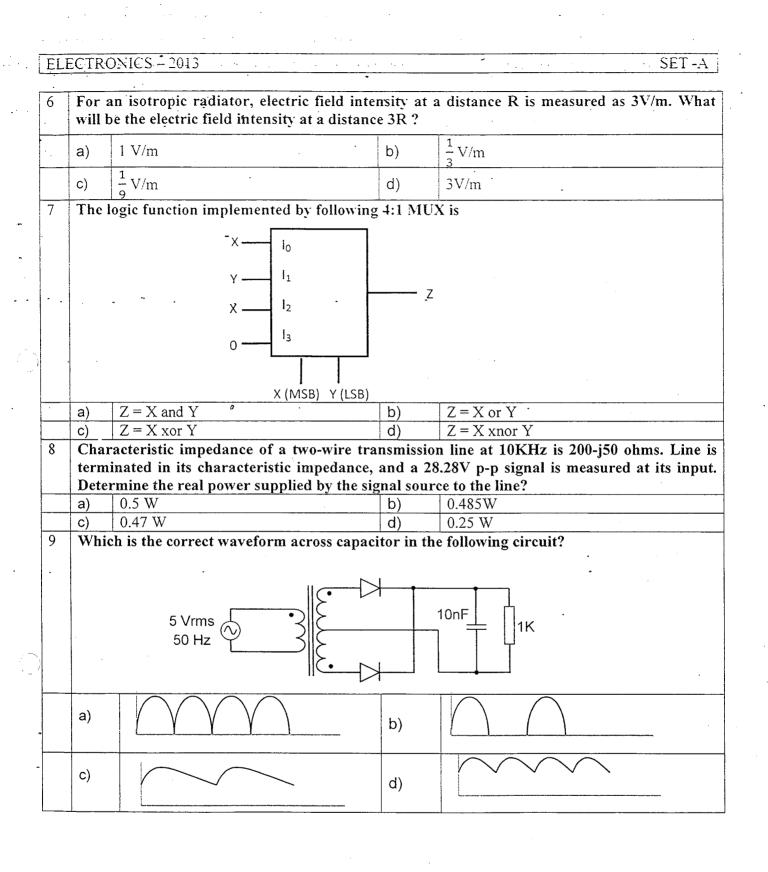

www.satishkashyap.com

Not available in NPTEL

ELECTRONICS - 2013

SET -A

इसरो डिल्ट	INDIAN SPACE RESEARCH ORGANISATION	Page 1 of 18


www.satishkashyap.com Not available in NPTEL

TTT	CTDO	NUCS 2012		SET-A
ELE	<u>CIKU</u>	NICS - 2013 -		JL1-A
2	transn	nal source with 100m wavelength is c nission line terminated in its character es at two ends of the transmission line	istic imp	d to the input terminals of a 150m long pedance. The phase difference between the y-state condition is :
		2π	b)	3 π
		4 π	d)	π
3	$Q_1=4\pi$ are un	$\mathbf{x} \times \mathbf{x} + $	he coora ively.)	P ₂ (2,3,1). The force on Q ₂ due to a charge linates are measured in Meters. a_x , a_y and a_z
		a _y N	b)	-a _y N
		4a _x +5a _y +2a _z N	d)	-4a _x -5a _y -2a _z N uilt using an operational amplifier having
	unity	gain bandwidth of 1MHz. What is the 100Ω	10K	160pF
	a)	1 KHz	b)	10 KHz
		100 KHz	d)	500 KHz
5	What cycle:	- ·	put Y, w	vhen CLK frequency is 1MHz @ 50% duty
	a)	500 KHz @, 50% duty cycle	b)	500 KHz @ 25% duty cycle
	c)	250 KHz @ 50% duty cycle	d)	250 KHz @ 25% duty cycle
L		L		

इसरी ंडन्व	INDIAN SPACE RESEARCH ORGANISATION	Page 2 of 18
1		

FREE online GATE coaching

www.satishkashyap.com Not available in NPTEL

इसरो जिन्ह INDIAN SPACE RESEARCH ORGANISATION Page 3 of 18

www.satishkashyap.com

· ·

Not available in NPTEL

ELI	ECTRO	NICS – 2013		- SET -A .
10				output is 1mV rms. Net gain of the circuit
	a)	+ 30dB ·	b)	- 30dB
	c)	- 60dB	d)	+ 60dB
11	A: 5 power B: 8 t power	vit Quantizer with input dynamic	ic range of -	cations : 1V to +1V with Q1 as quantization noise 5V to +0.5V with Q2 as quantization noise
	.a). ·	16	. b).	256 -
	c) .	64	d)	128
12	The d	ivergence of magnetic field inten	sity is	
	a)	Electric charge density	b)	Electric field intensity
	c)	Zero	d)	Conduction current density
14	a) c) A tra	•	~	Baud rate = 19200, Data = 55h Baud rate = 9600, Data = AAh e of 500hms has to deliver 10KW power at ms current anywhere along the line is 20A.
	What	is the maximum VSWR that can	be tolerated	on this line?
	a)	2	b)	1
<u> </u>	c)	3	. d)	2.5
15	Rout	Hurwitz criterion is used to det	ermine	
	a)	Relative stability of the system	b)	Time response of the system
	c)	Absolute stability of the system	d)	Roots of the characteristic equation graphically
16	signa			used to generate active low chip select with 16 bit address bus. What is address
		A12 -	#	
	a)	A12 - D000h to EFFFh , size= 8K Bytes	//b)	D000h to DFFFh, size= 4K Bytes

इसरी विषय	INDIAN SPACE RESEARCH ORGANISATION	Page 4 of 18

www.satishkashyap.com

17 If the waveguide cross-section of a square waveguide with TE11 propagation mode is gradually deformed into'a circle, then the corresponding circular waveguide mode will be: a) TE11 b) TE10 c) TE21 d) TE12 18 What could be the output current rating of following shunt regulator? 50Ω $0.4W =$ $$ 10V $$ $5V =$ $1_{L} < 100mA$ 10V $$ $$ $$ a) $0 < I_L < 100mA$ b) $20mA < I_L < 100mA$ c) $0 < I_L < 50mA$ d) $10mA < I_L < 100mA$ 40 IomA < $I_L < 100mA$ b) $20mA < I_L < 100mA$ 41 $$ $$ $$ a) $0 < I_L < 50mA$ d) $10mA < I_L < 100mA$ 43 An FM-CW (Frequency Modulated - Continuous Wave) Radar is essentially a) Bistatic b) a) Bistatic b) Monostatic C) Can operate either as monostatic or as d) None of the above 20 The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Testa and eddy current loss is 15 W. If t	EL	ECTR	ONICS - 2013	<u>-</u>	- SET -A			
gradually deformed into'a circle, then the corresponding circular waveguide mode will be:a)TE11b)TE10c)TE21d)TE1218What could be the output current rating of following shunt regulator?500 500 10V $5V$ 10V $4L \le 100mA$ 10V $4L \ge 100mA$ 10V								
gradually deformed into'a circle, then the corresponding circular waveguide mode will be:a)TE11b)TE10c)TE21d)TE1218What could be the output current rating of following shunt regulator?500 500 10V $5V$ 10V $4L \le 100mA$ 10V $4L \ge 100mA$ 10V	17	7 If the waveguide cross-section of a square waveguide with TF11 propagation mode is						
a) TE11 b) TE10 c) TE21 d) TE12 18 What could be the output current rating of following shunt regulator? 50Ω $5V - 1$ $L - 100mA$ 10 $-5V - 1$ $L - 100mA$ a) $0 < I_L < 100mA$ b) $20mA < I_L < 100mA$ c) $0 < I_L < 50mA$ d) $10mA < I_L < 100mA$ c) $0 < I_L < 50mA$ d) $10mA < I_L < 100mA$ a) Bistatic b) Monostatic c) Can operate either as monostatic or as d) None of the above 20 The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400		gradually deformed into'a circle, then the corresponding circular waveguide mode will be						
c) TE21 d) TE12 18 What could be the output current rating of following shunt regulator? 500 500 10v $5\sqrt{2}$ l_{4} a) $0 < I_L < 100 \text{mA}$ b) $20 \text{mA} < I_L < 100 \text{mA}$ c) $0 < I_L < 50 \text{mA}$ b) $20 \text{mA} < I_L < 100 \text{mA}$ c) $0 < I_L < 50 \text{mA}$ d) $10 \text{mA} < I_L < 100 \text{mA}$ c) $0 < I_L < 50 \text{mA}$ d) $10 \text{mA} < I_L < 100 \text{mA}$ 19 An FM-CW (Frequency Modulated - Continuous Wave) Radar is essentially a) a) Bistatic b) Monostatic c) Can operate either as monostatic or as d) None of the above 20 The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density is 2 Cesla and eddy current loss will a) Reduce to one-fourth d) a) Reduce to one-fourth d) Remain same 21 The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given by <		a)	TE11					
18 What could be the output current rating of following shunt regulator? 500 500 10V $5V$ 0.4W 0 a) $0 < I_L < 100 \text{mA}$ b) $20\text{mA} < I_L < 100\text{mA}$ c) $0 < I_L < 50\text{mA}$ d) $10\text{mA} < I_L < 100\text{mA}$ c) $0 < I_L < 50\text{mA}$ d) $10\text{mA} < I_L < 100\text{mA}$ e) An FM-CW (Frequency Modulated - Continuous Wave) Radar is essentially a) Bistatic c) Can operate either as monostatic or as d) None of the above 20 The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss will a) Reduce to half b) c) Reduce to one-fourth d) a) Reduce to ne-fourth d) a) EHx b) EHy c) Reduce to and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynting vector is given by a) EHx <		c)	TE21					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	·18	Wha	t could be the output current rating of f	ollowing				
a) $0 < I_L < 100\text{mA}$ b) $20\text{mA} < I_L < 100\text{mA}$ c) $0 < I_L < 50\text{mA}$ d) $10\text{mA} < I_L < 100\text{mA}$ c) $0 < I_L < 50\text{mA}$ d) $10\text{mA} < I_L < 100\text{mA}$ e $0 < I_L < 50\text{mA}$ d) $10\text{mA} < I_L < 100\text{mA}$ 19 An FM-CW (Frequency Modulated - Continuous Wave) Radar is essentially a) Bistatic b) Monostatic c) Can operate either as monostatic or as bistatic d) None of the above 20 The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss will a) Reduce to half b) Get doubled c) Reduce to one-fourth d) Remain same 21 The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given by: a) EH£ŷ d) None of the above 22 If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them is a) Zero mean Gaussian distributed b)				C.	3			
a) $0 < I_{L} < 100 \text{mA}$ b) $20 \text{mA} < I_{L} < 100 \text{mA}$ c) $0 < I_{L} < 50 \text{mA}$ d) $10 \text{mA} < I_{L} < 100 \text{mA}$ 19An FM-CW (Frequency Modulated – Continuous Wave) Radar is essentiallya)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EHx̂b)EHŷc)EHx̂d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π 23The current flowing through a capacitor in an AC circuit is :a)Non-existent24The current flowing through a capacitor in an AC circuit is :a)			50Ω					
a) $0 < I_{L} < 100 \text{mA}$ b) $20 \text{mA} < I_{L} < 100 \text{mA}$ c) $0 < I_{L} < 50 \text{mA}$ d) $10 \text{mA} < I_{L} < 100 \text{mA}$ 19An FM-CW (Frequency Modulated – Continuous Wave) Radar is essentiallya)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EHx̂b)EHŷc)EHx̂d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π 23The current flowing through a capacitor in an AC circuit is :a)Non-existent24The current flowing through a capacitor in an AC circuit is :a)								
a) $0 < I_{L} < 100 \text{mA}$ b) $20 \text{mA} < I_{L} < 100 \text{mA}$ c) $0 < I_{L} < 50 \text{mA}$ d) $10 \text{mA} < I_{L} < 100 \text{mA}$ 19An FM-CW (Frequency Modulated – Continuous Wave) Radar is essentiallya)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EHx̂b)EHŷc)EHx̂d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π 23The current flowing through a capacitor in an AC circuit is :a)Non-existent24The current flowing through a capacitor in an AC circuit is :a)								
a) $0 < I_{L} < 100 \text{mA}$ b) $20 \text{mA} < I_{L} < 100 \text{mA}$ c) $0 < I_{L} < 50 \text{mA}$ d) $10 \text{mA} < I_{L} < 100 \text{mA}$ 19An FM-CW (Frequency Modulated – Continuous Wave) Radar is essentiallya)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EHx̂b)EHŷc)EHx̂d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π 23The current flowing through a capacitor in an AC circuit is :a)Non-existent24The current flowing through a capacitor in an AC circuit is :a)			$5V \downarrow 5V \downarrow$	7				
a) $0 < I_{L} < 100 \text{mA}$ b) $20 \text{mA} < I_{L} < 100 \text{mA}$ c) $0 < I_{L} < 50 \text{mA}$ d) $10 \text{mA} < I_{L} < 100 \text{mA}$ 19An FM-CW (Frequency Modulated – Continuous Wave) Radar is essentiallya)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EHx̂b)EHŷc)EHx̂d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π 23The current flowing through a capacitor in an AC circuit is :a)Non-existent24The current flowing through a capacitor in an AC circuit is :a)			0.414		i i			
c) $0 < I_L < 50mA$ d) $10mA < I_L < 100mA$ 49An FM-CW (Frequency Modulated – Continuous Wave) Radar is essentiallya)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in 			- 0.4W -		r para an Annana Anna			
c) $0 < I_L < 50mA$ d) $10mA < I_L < 100mA$ 49An FM-CW (Frequency Modulated – Continuous Wave) Radar is essentiallya)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EH\$\hat{x}b)EH\$\hat{y}c)EH\$\hat{x}d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)a)Non-existentb)Conduction current				· · · · · · · · · · · · · · · · · · ·				
49An FM-CW (Frequency Modulated – Continuous Wave) Radar is essentiallya)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticb)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EH \hat{x} b)EH \hat{y} c)EH \hat{x} d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi a$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)a)Non-existentb)Conduction current				b)	$20\text{mA} \le I_L \le 100\text{mA}$			
a)Bistaticb)Monostaticc)Can operate either as monostatic or as bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given by.a) $EH\hat{x}$ b) $EH\hat{y}$ c) $EH\hat{x}$ d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)a)Non-existentb)Conduction current	_	c)	$0 < I_L < 50 mA$	d)	$10 \text{mA} < \text{I}_{\text{L}} < 100 \text{mA}$			
CCan operate either as monostatic or as bistaticDInformative20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EH \hat{x} b)EH \hat{y} c)EH \hat{x} d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isUniform between $-\pi$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)Non-existentb)Conduction current	19	An F	M-CW (Frequency Modulated – Contin	uous Wε	eve) Radar is essentially			
C)bistaticd)None of the above20The flux in a magnetic core is sinusoidally varying at 200 Hz. The maximum flux density is 2 Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to halfb)Get doubledc)Reduce to one-fourthd)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya)EHxb)EHyc)EHxyd)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isUniform between $-\pi$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)Non-existentb)Conduction current		a)	Bistatic	b)	Monostatic			
Tesla and eddy current loss is 15 W. If the frequency is raised to 400 Hz and maximum flux density reduced to 1 Tesla, the eddy current loss willa)Reduce to 1 Tesla, the eddy current loss willa)Reduce to halfb)b)Get doubledc)Reduce to one-fourthd)A)EH \hat{x} b)a)EH \hat{x} b)b)EH \hat{y} c)EH \hat{x} b)c)EH \hat{x} d)none of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)c)Uniform between $-\pi/2$ and $\pi/2$ d)a)Zero mean Gaussian distributedb)c)Uniform between $-\pi/2$ and $\pi/2$ d)a)Non-existentb)Conduction current		c)		d)	None of the above			
c)Reduce to one-fourthb)Remain same21The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given by-a) $EH\hat{x}$ b)c) $EH\hat{x}$ d)c) $EH\hat{x}$ d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)Non-existentb)Conduction current	20	Tesla	and eddy current loss is 15 W. If the fr	equency	200 Hz. The maximum flux density is 2 is raised to 400 Hz and maximum flux			
21 The electric field intensity E and magnetic field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given by: a) $EH\hat{x}$ b) $EH\hat{y}$ c) $EH\hat{x}\hat{y}$ d) None of the above 22 If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them is a) Zero mean Gaussian distributed b) Uniform between $-\pi$ and π c) Uniform between $-\pi/2$ and $\pi/2$ d) Non-zero mean Gaussian distributed 23 The current flowing through a capacitor in an AC circuit is : a) a) Non-existent b) Conduction current				b)	Get doubled			
The electric field intensity H are coupled and propagating in free space in x and y direction respectively, the Poynfing vector is given bya) $EH\hat{x}$ b) $EH\hat{y}$ c) $EH\hat{x}\hat{y}$ d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributed c)b)Uniform between $-\pi$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)Non-existentb)Conduction current								
a) $EH\hat{x}$ b) $EH\hat{y}$ c) $EH\hat{x}\hat{y}$ d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)Non-existentb)Conduction current	21	The e	electric field intensity E and magnetic fic pace in x and y direction respectively.	eld intens	sity H are coupled and propagating in			
c) $EH\hat{x}\hat{y}$ d)None of the above22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them is		a)	EHŶ					
22If x and y are two random signals with zero mean Gaussian distribution having identical standard deviation, the phase angle between them is23a)Zero mean Gaussian distributed to Uniform between $-\pi$ and π 23C)Uniform between $-\pi/2$ and $\pi/2$ 23The current flowing through a capacitor in an AC circuit is :a)Non-existentb)Conduction current)							
A random signals with zero litean Gaussian distribution having identical standard deviation, the phase angle between them isa)Zero mean Gaussian distributedb)Uniform between $-\pi$ and π c)Uniform between $-\pi/2$ and $\pi/2$ d)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)Non-existentb)Conduction current	22	·						
c)Uniform between $-\pi/2$ and $\pi/2$ a)Non-zero mean Gaussian distributed23The current flowing through a capacitor in an AC circuit is :a)Non-existentb)Conduction current	22	A wind y are two random signals with zero mean Gaussian distribution having identical						
c) Uniform between -π/2 and π/2 d) Non-zero mean Gaussian distributed 23 The current flowing through a capacitor in an AC circuit is : a) Non-existent b) Conduction current	• •	a)		b)	Uniform between $-\pi$ and π			
a) Non-existent b) Conduction current		c)	Uniform between $-\pi/2$ and $\pi/2$	d)				
	23	The c	urrent flowing through a capacitor in a	n AC cir				
		a)	Non-existent	b)	Conduction current			
		c)	Displacement current					

इसरो ।इनव	INDIAN SPACE RESEARCH ORGANISATION	Page 5 of 18
1		4 1

www.satishkashyap.com Not available in NPTEL

~ ----

ELE	CTRO	NICS – 2013	· .	SEI-A		
<u> </u>	•					
24			n for Ma	jority Voting, assuming A,B,C are inputs		
	and Y	' is output? '				
	a)	Y = AB + AC + CB	b)	Y= A+B+C		
	c)	Y= ABC	d)	Y = AB + BC		
25	For b	roadside antenna array, the largest pos	sible spa	cing between the antenna elements		
	without any grating lobes is					
	a)	λ/2	b)	λ.		
	a) C)	2 λ.	d)	None of the above		
26	Eor t	he 8085 assembly language program give		y, the content of the accumulator after the		
20		tion of the program is		,		
		MVI A, 45H				
		MOV B, A				
	3003	STC				
	3004	CMC				
		RAR				
	3006	XRA B		1 A 77 Y		
	a)	00H	b)	45H		
	c)	67H	d)	E7H		
27	Conc	luction angle of a Class AB amplifier is	:			
	a)	<180°	b)	Between 180° and 360°		
	c)	360°	d)	90°		
28	For 1	non dispersive medium				
	a)	Phase velocity > Group velocity	b)	Phase velocity < Group velocity		
	c)	Phase velocity = Group velocity	d)	None of the above		
29	Scho	ttky clamping is resorted in TTL gates				
	a)	to reduce propagation delay	b)	to increase noise margins		
	c)	to increase packing density	d)	to increase fan-out		
30		At cut-off frequency, the phase velocity of a waveguide is				
	a)	Zero	b)	Infinite		
	c)	Finite	d)	None of the above		
31	<u> </u>	ener diode, when used in voltage stabili	zation cir	cuits, is biased in		
	a) -	reverse bias region below the breakdown voltage	b)	reverse breakdown region		
	c)	forward bias region	d)	forward bias constant current mode		
L		Y				

Page 6 of 18 INDIAN SPACE RESEARCH ORGANISATION

www.egate.ws

www.satishkashyap.com

ELECTRONICS - 2013

SET -A

32	The the	closed loop frequency res gain and phase margins?	ponse of a dc-dc conver	rter is shown in following figure. What are
				•
		30 ⊨		· .
		30	Gain	- 180
		20	\	120
	ļ			· ∕ Phase
		10	<u> </u>	60
		dB)		
		Gain (dB)	~~~~~	
		ق -10		Degree Phase (Degree
		-10		-60 set
		-20		-120
		-30 +		180
				\mathbf{N}
	a)	20dB, 80°		00.10.000
	a) C)	20dB, 120°	b) d)	26dB, 80° 26dB, 120°
33	· · · · ·			
	base	voltage (VCB) is 0.2 V, the	en the transistor is ope	tage (<i>VBE</i>) is 0.7V and the collector-to- rating in the
	a)	normal active mode	b)	saturation mode
24	c)	inverse active mode	· · d)·	cutoff mode
34		rt Circulator is		
•	a)	Reciprocal, matched	b)	Non reciprocal, unmatched
35	C)	Non reciprocal, matched	d)	Reciprocal, unmatched
	pro	agation delay of 10 ns ea	h. If the worst case dela	nter are made using flip flops having a ay in the ripple counter and the
	sync	hronous counter be R and	S respectively, then	ay in the ripple counter and the
-	a)	R = 10 ns, S = 80 ns	b)	R = 40 ns, S = 10 ns
- 24	<u>c)</u>	R = 10 ns S = 10 ns	d)	R = 80 ns, S = 10 ns
36	Gair	of an RC low pass filter	naving a time constant	' τ ' and frequency ' ω ' is:
	a)	$\sqrt{1+(\omega\tau)^2}$	b)	$1/\sqrt{1+(\omega\tau)^2}$
	c)	$\omega \tau / \sqrt{1 + (\omega \tau)^2}$	d)	$\omega \tau / \sqrt{1 - (\omega \tau)^2}$

इसरो डिनव	INDIAN SPACE RESEARCH ORGANISATION	Page 7 of 18

www.satishkashyap.com Not available in NPTEL

ELE	CTR	ONICS - 2013		SET -A -
				· · · · · · · · · · · · · · · · · · ·
			olation in	dB), D (directivity in dB), C (coupling in
	dB)	are related by		
	a)	I=C/D	b)	$I = D - C \qquad .$
	c)	I = D + C	<u>d)</u>	I = D/C
38	The	two numbers represented in signed 2's c 0110 . If Q is subtracted from P , the value	ompleme	In the form are $P = 11101101$ and $Q =$
			b)	00000111
	a)	1000001111	d)	111111001
39	<u>c)</u>		<u> </u>	
57	Dep	letion type MOSFET operates in :	1	
	a)	Depletion Model only	b)	Enhancement Mode only
	c)	Both depletion and enhancement mode	d)	None of the above
40	Elec	tric Field and Magnetic Field are perpe	ndicular t	o each other in :
	a)	Klystron	b)	Magnetron
	c)	TWTA	d)	All of the above
	volt	age?) 4mA	hents as shown below. What is the output
	a)	9.3 V	<u>b)</u>	7.5 V
42	_ C)	0 V	d)	2.5 V
42	lf r	ange of a radar is to be doubled, the pea	k transmi	
	a)	Increased by a factor of 2	b)	Increased by a factor of 4
	c)	Decreased by a factor of 4	d)	Increased by a factor of 16
43	The	e electric field measured in the far field (grage power densities at a distance of 500	of an ante m from t	nna at a distance of 50m is 1V/m. The he antenna is
		$\frac{26.6 \mu W/m^2}{26.0 \mu W/m^2}$	b)	0.1µW/m ²
<u> </u>	a)	$10\mu W/m^2$	d)	$13.3\mu W/m^2$
1	C)	10μ w/m		1 2 pt 11/112

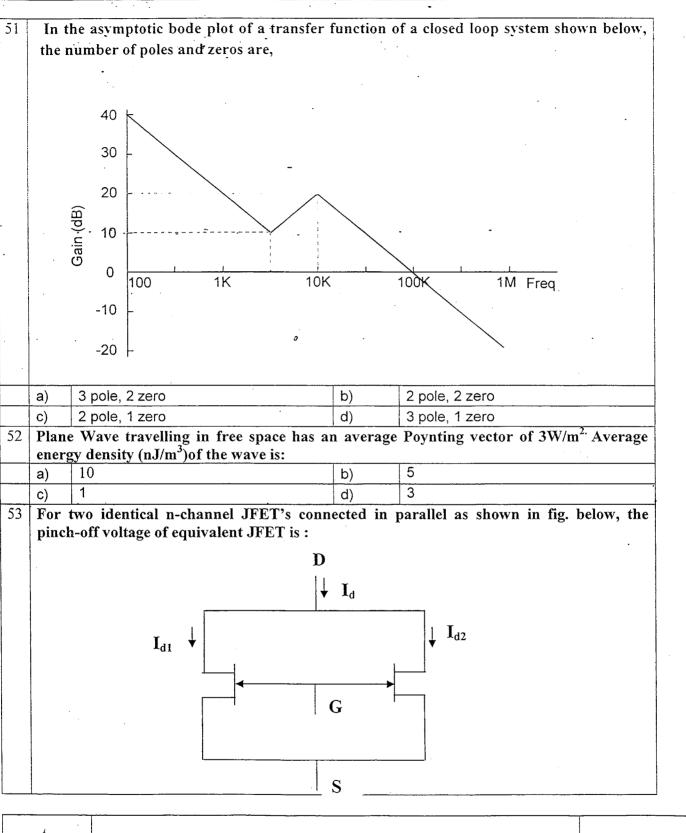
 INDIAN SPACE RESEARCH ORGANISATION	Page 8 of 18

1

and a second state

/ For Video Lectures www.satishkashyap.com Not available in NPTEL

EL	EÇTR	ONICS – 2013	-	SET -A
		•		······································
44	lfac	counter having 10 Flip Flops is initially	at 0, wha	t count will it hold after 2060 pulses ?
L	a) ·	000 000 1100	b)	000 001 1100
	C)	000 001 1000	d)	000 000 1110
45	For maxi	a frequency modulated signal repre- mum frequency deviation in the carrie	sented by	y s(t)=10sin(6 x 10^8 t + 2sin100 π t). The
	a)	990Hz	b)	100Hz
	c)	50Hz	d)	200Hz
46	For	which of the following conditions, the	/ /	own below will function as precision full
	wave	e rectifier?		is a serie of the function as precision fun
-		Vin (v)		
	a)	R1 = R2 = R]	R1 = R3 = R
	c)	R2 = 2R1	d)	R1 = R2 = R3
47		monostatic radar, if the antenna apertu		
	a)	Reduce by a factor of 2	b)	Increase by a factor of 2
<u> </u>	c)	Reduce by a factor of $\sqrt{2}$	d)	
48		lisadvantage of single stub matching is		Increase by a factor of $\sqrt{2}$
	a)	Every load needs a new stub position	b)	Only shupt stub should be used
	c)	Only resistive load can be matched	+	Only shunt stub should be used
49			d)	Useful only in two wire transmission line
	direc	tivity of the antenna fed by input powe	o nas max er of 0.4 W	imum radiation intensity of 0.5 W/sr. The
	a)	16.53	b)	12.2
	c) [·]	10.36	d)	11.31
50	12 ac	emory system of size 16 K bytes is requ ddress lines and 4 data lines each. T ory system is	ired to be hen numl	designed using memory chips which have ber of such chips required to design the
	a)	2	b)	4
	c)	8	d)	16
	L		1 7/	


न्त्रा। जिसह	INDIAN SPACE RESEARCH ORGANISATION	Page 9 of 18

ELECTRONICS - 2013

www.satishkashyap.com

.

SET -A

इसते जिम्ब	INDIAN SPACE RESEARCH ORGANISATION	Page 10 of 18	
·			

-

ELECTRONICS - 2013

SET -A

		· · · · · · · · · · · · · · · · · · ·				
	a)	Doubled '	b)	Becomes half		
	c)	Remains same	d)	None of the above		
54	The velocity at which a sinusoidal signal of 10^9 rad/s travels down a loss-less transmission line for which L=0.4 μ H/m and C=40 pF/m is					
	a)	2.36 x 10 ⁸ m/s	b)	2.5 x 10 ⁸ m/s		
	C)	5 x10 ⁹ m/s	d)	4.5x10 ⁹ m/s		
55	The	Maxwell's equation $ abla imes \overline{E} = -rac{\partial \overline{E}}{\partial t}$	is obtain	ed from :		
	a)	Ampere's Law	b)	Faraday's Law		
	c)	Lenz's Law	d)	Both b and c		
56		sless line having characteristic imped VSWR of the line will be :	lance Zo is	s terminated with a load impedance of		
	a)	1	b)	10		
	c)	Infinite	d) -	None of the above		
57	A sig Tran	nal 1 + cos(2πft) + cos (6πft) where f= sform is carried out. How many lines	=1MHz is s s will be se	sampled at 3MHz and Fourier en in Fourier Transform?		
	a)	5	b)	1		
	C)	3	d)	2		
58	The :	array factor of an array antenna dep	ends on			
	a)	Number of radiating elements	b)	Spacing between the elements		
	.c)	Phase of the applied signal	d)	All of the above		
59	Whie	ch of the following parameter is impr	oved by in	troducing pipelining in digital design?		
	a)	Area (Gate count)	b)	Maximum clock frequency		
•	C)	Power dissipation .	d)	NT 1		
60	A tra load	insmission line having characteristic impedance ${}^{\prime}Z_{L}{}^{\prime}$ appears in a Smith C	impedance Chart on:	$e'Z_t'$ of varying length in series with a		
	a)	Constant Resistance Circle	b)	Constant VSWR Circle		
	c)	Constant Reactance Circle	d)	All of the above		
61	Impe	edance characteristics on a Smith Ch	art repeat	after a distance of:		
	a)	λ	b)	λ/4		
	c)	λ/2 .	d)	None of the above		

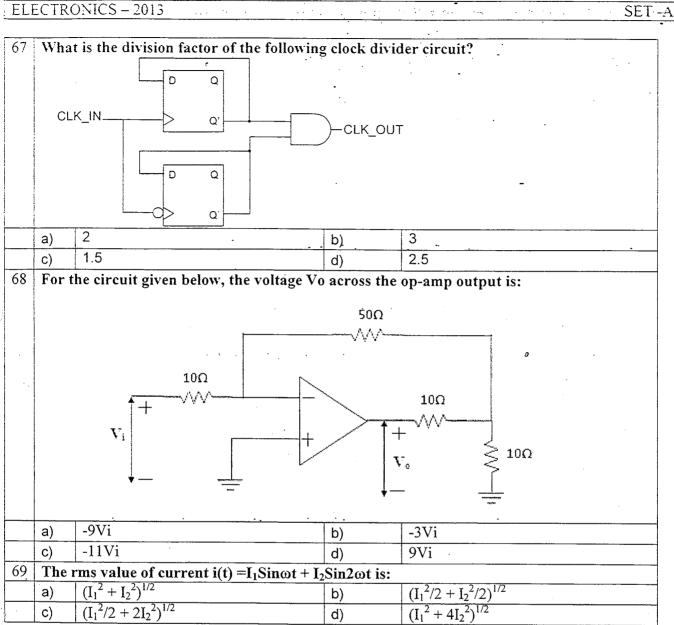
इसरो ंडन्व

INDIAN SPACE RESEARCH ORGANISATION

Page 11 of 18

www.egate.ws

www.satishkashyap.com

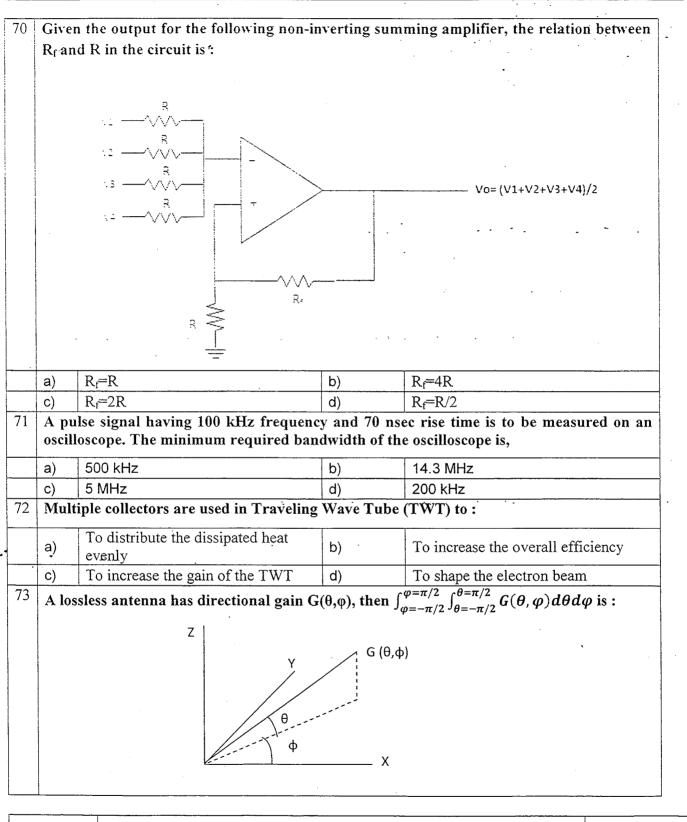

Not available in NPTEL

ELE	ECTRON	ICS – 2013	•	. SET -A		
				· · · · · · · · · · · · · · · · · · ·		
62			d frequenc	y, a low pass RC filter acts as a pure		
		tor when:				
		0=0	b)	ωτ>>]		
	-/	or = 1	d)	<u>ωτ<< 1</u>		
63	•	•	•	ng of a high frequency transformer		
	having primar		:2. What is	the value of capacitance seen across		
		μF	b)	62.5µF		
		μη 5μF	d) ·	1.6µF		
64	I	vill be the output of the following cir	,	· · · · · · · · · · · · · · · · · · ·		
04		The better output of the following ch	cun, n pon	II-F IS SLUCK ALL:		
	· A					
	в —					
	_			•		
	с—					
	a) A	\+B+C	b)	A'B'C'		
	<u>↓</u>	ABC)'	d)	0		
65		current mirror circuit shown below				
05	current	+ Tier	v, ii the chi			
	$V_{c} = +10V$					
	$\mathbf{R} = \sum_{i=1}^{j}$					
	20KΩ Š					
		·				
		Q1				
				Q 2		
		·	•			
		,	$V_{\rm E}$ =-10V			
).328mA	b)	2.955mA		
	c) ().105mA	d)	0.012mA		
66		t of an Op-amp is 1V peak, and slew		μs. The maximum frequency of		
L		inusoidal signal that can be reprodu	iced is:			
L		398Hz	b)	796Hz		
	c)	796KHz	d)	398KHz		

वनवां हिमह	INDIAN SPACE RESEARCH ORGANISATION	Page 12 of 18

www.satishkashyap.com Not avai

Not available in NPTEL



इसगे जन्म	INDIAN SPACE RESEARCH ORGANISATION	Page 13 of 18

www.satishkashyap.com

ELECTRONICS - 2013

SET -

 INDIAN SPACE RESEARCH ORGANISATION	Page 14 of 18	

For¹Video Lectures

www.satishkashyap.com

Not available in NPTEL

3

ELI	ECTRO	DNICS – 2013		SET -A
	a)	-4π	b)	2π
•	C)	$\leq 4\pi$	d)	$\leq 2\pi$
74	$\int \sqrt[3]{C}$	bos x - jSinx is equal to		
	a)	$(cosx)^{1/3} - j(sinx)^{1/3}$	b)	$\sqrt[3]{\cos^2 x - j\sin^2 x}$
	c) -	$\cos \frac{x}{3} - j\sin \frac{x}{3}$	d)	$\sin\frac{x}{3} - j\cos\frac{x}{3}$
75 If f(t) is 1 MHz sinusoid with 1 Vp-p and sampling frequency fs is 25KHz, the output will be : f(t) f(t) f(t) f(t) f(t) f(t) f(t) f(t)			it Output	
	a)	0V	b)	DC value anywhere between -1V and +1V
	c)	DC value anywhere between - 0.5V and +0.5V	d)	1Vp-p 1MHz sinusoid

 वनहां ग्रिम्इ	INDIAN SPACE RESEARCH ORGANISATION	Page 15 of 18

ELECTRONICS - 2013 -

www.satishkashyap.com Not available in NPTEL

SET -A

For a practical low pass filter, the ideal amplitude and phase response will be : 76 Amp φ a) **(1)** -B/2 -B/2 B/2 Amp φ b) 0 B/2 +̈́Β/2 -B/2 - ω-Amp φ c) ۰. -B/2 B/2 -B/2 ω— Amp φ d) -B/2 B/2____ω_ B/2 -B/2 ω–

इसरों फ्रिइ	INDIAN SPACE RESEARCH ORGANISATION	Page 16 of 18

FREE online GATE coaching

www.egate.ws

www.satishkashyap.com Not available in NPTEL

ELECTRONICS - 2013 SET -A A 10dB attenuator is put at the input of a low noise amplifier having 3dB noise figure. 77 Now the noise figure of the cascaded amplifier will be 3dB a) b) 12dB 7dB c) d) None of the above A 33.33% duty cycle rectangular wave is fed to the input of an Spectrum Analyzer. 78 What will be observed? 2nd, 5th, 8th harmonics 3rd, 6th, 9th harmonics b) a) missing missing 1st, 4th, 7th harmonics d) C) All the harmonic present missing Phase function of a filter is $(f) = kf^2$, k > 0. The group delay of the filter has the shape 79 Group Delay a) -f __ Group Delay b) f Group Delay C) ____f ___

इमरो ।इन्व INDIAN SPACE RESEARCH ORGANISATION Page 17 of 18

FREE online GATE coaching

www.egate.ws

www.satishkashyap.com

Not available in NPTEL

-

ELECTRONICS - 2013

SET -A

		, Group Delay
	d)	
	•	f →
80		-p sinusoid is digitized by a 4 bit A-to-D converter with input dynamic range of 2V The signal to noise ratio of the digitized signal is :
	a)	384
	b)	96
	c)	48
	d)	24

End of questions

	इसरी जिन्हा	INDIAN SPACE RESEARCH ORGANISATION	Page 18 of 18	
1				1

www.egate.ws