N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any four questions out of remaining six questions.
(3) Figures to the right indicates full marks.

1. (a) Show that $\int_{0}^{1} \sqrt{1-x^{4}} d x=\frac{\sqrt{\pi}}{6} \sqrt[\frac{\frac{1}{4}}{\frac{3}{4}}]{\sqrt{3}}$
(b) Find the total length of the curve

(c) Change the order of integration and evaluat
(d) Solve $6 \frac{d^{2} y}{d x^{2}}+17 \frac{d y}{d x}+12 y=e$
2. (a) Evaluate $\int_{0}^{\pi} \frac{d x}{a+b \cos x}, a \geqslant 0$ and deduce
that

$$
\int_{0}^{\pi} \frac{d x}{(a+b \cos x)^{2}} \frac{\pi a}{\left.a^{2}-b^{2}\right)^{3 / 2}}
$$

$$
x=0, y=0, z=0, \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

3. (a) Solve $\left(\frac{y}{x} \sec y-\tan y\right) d x-(x-\sec y \log x) d y=0$
(b) Using Eulers Method find approximate value of y at $x=1$ in five steps taking
(c) Solve $\left(D^{3}+D\right) y=\operatorname{cosec} x$, by method of variation of parameters.
4. (a) Solve by Runge-Kutta Method of fourth order $\frac{d y}{d x}=3 x+y^{2}, x$ $x=1 \cdot 1$
(b) Solve by Taylors Series Method $\frac{d y}{d y}=$
(c) Solve $(x+2)^{2} \frac{d^{2} v}{x}$
5. (a) Find the area of the Cardioide, $r=a(1+\cos \theta)$.
(b) Solve $\frac{d y}{d x} \cosh x=2 \cosh ^{2} x \sinh x-y \sinh x$.
(c) (i) Solve $\frac{d y}{d x}=1-x(y-x)-x^{3}(y-x)^{2}$
(ii) Solve $\frac{d^{4} y}{d x^{4}}-a^{4} y=\sin a x$.
6. (a) Evaluate $\iint_{R} x y(x+y) d x d y$ where R is the region $x y=4, y=0, x=1, x=4$.
(b) Evaluate $\int_{0}^{\pi / 4} \int_{0}^{\sqrt{\cos 2 \theta}} \frac{r}{\left(1+r^{2}\right)^{2}} d \theta d r$
(c) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x}+\infty$
7. (a) Evaluate $\int_{-\pi}^{\pi} \sin ^{2} x$
(b) (i) The differ equation of motion of a body is $\frac{d^{2} x}{d t^{2}}+n^{2} x=t$ cosit Solve sequation, what is the solution if $i=n^{2}$.
(ii) The density of a uniform circular lemina of radius ' r ' varies as the square of its distance from a fixed point on the circumference of the circle. Find the mass of the lemina.
(c) Sketch the area of integration and evaluate

$$
\int_{1}^{2} \int_{-\sqrt{2-y}}^{\sqrt{2-y}} 2 x^{2} y^{2} d x d y
$$

