

Find the value of M,, where

$$M_{ij} = \int_{0}^{h_{e}} x^{2} \phi_{i} \phi_{j}$$

$$\varphi_1 = 1 - \frac{\overline{x}}{h_e}$$

$$\phi_2 = 1 - \frac{\overline{X}}{h}$$

1	1.1				
2	1/2	1/2			
3	1/6	4/6	1/6	- 1	The same
4	1/8	3/8	3/8	1/8	THE CO.
5	7/90	32/90	12/90	32/90	7/90

Write the advantages of weak form.

(b) Analyse the truss shown in figure for axial forces using FE method. Also find out unknown displacements. $E = 2 \times 10^5 MPa$

12

8

Element	Area	Length	
-1-	50 mm ²	1000 mm	
2	40 mm ²	800 mm	

Solve the following Differential Equation:

$$y'' - 64y + 10 = 0$$

Given:
$$y(0) = 0$$

$$y(1) = 0$$

Find: u(0.25), y(0.5) and y(0.75); $0 \le x \le 1$ using (a) Finite Difference Method

- (b) Galerkin or Subdomain Method.
- (a) Construct the weak form of the following one dimensional heat conduction/convection : 9.

$$\frac{-\,d}{dn}\bigg(a\,\frac{du}{dn}\bigg) + cu = q \quad \text{for } 0 < n < 1$$

BCS are — (i)
$$u(0) = u_0$$

(i)
$$a \frac{du}{dn} + \beta (u - u_{\infty}) \Big|_{n=7} = Q_0$$

Where 'a' and 'q' are functions of n and β, c, u, Q are constant.

Consider a simple cart system in static condition as shown below. Establish the governing differential equations of motions.

10. A steel fin of diameter 2 cm, length 10 cm and thermal conductivity 80 W/m°K is exposed to ambient air at 40°C with a heat transfer coefficient 100 W/m² °K. One end of the fin is maintained at a temperature of 540°C and the other end is insulated. Governing DE is

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0 \quad \theta = T_x - T_{\infty}$$

where
$$m^2=\frac{Ph}{KA}$$
 and $\Omega\equiv 0\leq x\leq \mathit{l}.$

P = Perimeter; A - C. S. area

h = Heat Transfer Coefficient

K = Thermal Conductivity

T_{se} = Ambient Temperature

T, = Local Temperature of fin.