5/23/12 Code: A-20 ## **Diplete - ET (NEW SCHEME) - Code: DE61** **Subject: ANALOG COMMUNICATIONS** | Γime: 3 Hours | JUNE 2010 | Max. Marks: 100 | |---------------|------------|-----------------| | | 00.12 20.0 | | NOTE: There are 9 Questions in all. - Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else. | | Choose the correct or the be | st alternative in the following: | (2×10) | | | | |---|--|---|-------------------------------------|--|--|--| | | a. Amplitude modulation is the | process of | | | | | | | (A) superimposing a low fre(B) superimposing a high fre(C) carrier interruption.(D) frequency shift and phase | equency on a low frequency. | | | | | | | b. One of the following types of | b. One of the following types of noise becomes of great importance at high frequency. | | | | | | | (A) Shot noise(C) Impulse noise | (B) Random noise(D) Transit-time noise | | | | | | | c. What is the ratio of modulati | ing power to total power at 100% modulation? | | | | | | | (A) 1:3
(C) 1:2 | (B) 2:3(D) None of the above | | | | | | | d. The difference between pha | se and frequency modulation | | | | | | | (C) lies in the poorer audio a(D) lies in the different defin | tion index mf is passed through a frequency tripl | er. The output of tripler will have | | | | | | (A) m _f /3 | (B) ^m f | | | | | | | (C) ^{3m} f | (D) 9m f | | | | | | f | In a broadcast superheterodyne receiver, the | | | | | | | | (A) local oscillator operates below the signal frequency. (B) mixer input must be tuned to the signal frequency. (C) local oscillator frequency is usually double the IF. (D) RF amplifier normally works at 455 KHz above the carrier frequency. | | | | | | | | g. Which of the following antennas is best excited from a waveguide? | | | | | | | | (A) Biconical (C) Horn | (B) Helical(D) Discone | | | | | 5/23/12 Code: A-20 | | h. | A piston attenuator is a | | | | |-------------|----|---|--|-------------|---| | | | (A) Vane attenuator(C) Wave guide below cut off | (B) Mode filter(D) Flap attenuator | | | | | i. | To permit the selection of 1 out of 16 | equiprobable events, the number of bits | required i | is | | | | (A) 2
(C) \log_{10} (16) | (B) 8
(D) 4 | | | | | j. | Higher order TDM levels are obtained | d by | | | | | | (A) Dividing pulse widths(C) Using μ-law network | (B) Using A-law network(D) Forming supermaster groups | | | | | | • | IVE Questions out of EIGHT Questich question carries 16 marks. | ons. | | | Q.2 | a. | Explain the basic communication syst | em with a schematic block diagram. | (6) | | | | b. | Discuss the need for modulation in co | ommunication system. | (4) | | | Q.3 | | | ernal noise? Discuss any two for each ty sion multiplexing with a sketch to show | • | (6) interleaving of channel takes | | | | b. Draw the block diagram of a | a microwave link repeater, indicating the (8) | he function | n of each block. | | Q.4 | а | _ | we using $V_c \sin \varpi_c t$ as carrier and $V_m s$ nency components. | | s information signal. Plot its (6) | | | b | In a AM transmitter the unmodulate the modulation index. (3) | ed carrier power is 9 kW and when mod | dulated its | power is 10.125 kW. Find | | | c. | Explain the filter method of generation | n of SSB signal. | (7) | | | Q.5 | a. | Obtain the mathematical representation signal. (6) | n of FM wave using A _c sin 2πf _c t as ca | rrier and - | A _m sin 2πf _m t as modulating | | | b. | Explain with circuits the application of | of pre-emphasis and de-emphasis in FM | system. | (6) | | | | frequency sensitivity of modulato index. | (4) | requency | deviation and modulation | | Q.6 | a. | With a schematic block diagram, exp | plain the working of superheterodyne rec | eiver. | (8) | | | b. | Specify Intermediate frequencies and | explain the operation of IF amplifiers. | (8) | | | Q. 7 | a. | Write a note on Resonant and non-re | esonant antennas. | (6) | | iete-elan.ac.in/qpjun10/DE61.htm 5/23/12 Code: A-20 b. What are lens antennas and explain zoned lens. | | | c. Determine the length of an antenna operating at a frequency 1 MHz, assuming the velocity factor as 0.95. (4) | |-----|----|---| | Q.8 | a. | Write a note on space wave propagation and show that the distance of communication is $d = 4\sqrt{h_t} + 4\sqrt{h_r}$ where h_t and h_r are the heights of transmitter and receiver respectively. (6) | | | b. | Explain the field patterns for common modes in a rectangular waveguide. (6) | | | | c. Calculate the cut-off wavelength for a standard rectangular wave guide operating in $^{\rm TM}_{11}$ mode. (4) | | Q.9 | a. | Explain the pulse position modulation system with relevant waveforms. (6) | | | b. | What is companding and why is it required in pulse code modulation. (6) | c. What is Telegraphy? Describe briefly the system and machines used for transmitting and receiving it. **(4)** (6)