DECEMBER 2006

Code: D-15 Subject: CONTROL ENGINEERING
Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

- a. The output of a linear time-invariant system for a unit-step input is given by t^2e^{-t} . The transfer function is given by
 - (A) $\frac{s}{(s+1)^3}$

 $\mathbf{(B)} \ \frac{2s}{(s+1)^3}$

(C) $\frac{1}{s^2(s+1)}$

- (D) $\frac{z}{(s+1)^2}$
- b. The Laplace transform of a unit-ramp function is
 - **(A)** s

(B) s^2

(C) $\frac{1}{s}$

- **(D)** $\frac{1}{s^2}$
- c. A plant with transfer function T(s) has output feedback with constant gain K applied to it.

The effect of the feedback is to

- (A) shift some zeros of T(s).
- **(B)** shift all zeros of T(s).
- (C) shift all poles and zeros of T(s)
- **(D)** shift only the poles of T(s)
- d. The characteristic equation of a closed-loop system is given by

 $F(s) = s^4 + 4s^3 + 6s^2 + 8s + K = 0$. If the system is to be stable, K must lie in the range

(A) $-\infty < \mathbb{K} \le 8$

(B) 8≤K<∞

(C) $0 \le K < 8$

(D) $-8 \le K \le 8$

e. For a critically damped system, the following statement is not true:

- (A) A decrease in the damping will cause oscillatory behaviour.
- **(B)** The response to a unit step input converges asymptotically.
- **(C)** The system is marginally stable.
- **(D)** The step response never overshoots the final value.

f. A second-order system has the transfer function: $H(s) = \frac{25}{(s^2 + 6s + 25)}$. The damped natural frequency of oscillation is

(A) 5

(B) 4

(C) 3

(D) $\frac{3}{2\pi}$

g. If a unit step input is applied to a system with transfer function $H(s) = \frac{(s+3)}{(s^2+4s+2)}$, the steady-state output converges to

(A) $\frac{3}{2}$

(B) 0

(C) 1

(D) 00

h. If the poles of the transfer function of a system are lying on the imaginary axis in s-plane, the system is

(A) unstable

(B) stable

(C) marginally stable

(D) conditionally stable

i. The characteristic equation of a feedback-control system is $2s^4 + s^3 + 3s^2 + 5s + 10 = 0$. The number of roots in the right half of s-plane are

(A) 2

(B) 3

(C) 1

(D) 0

j. A unity feedback system has open-loop transfer function given by $G(s) = \frac{25}{s(s+6)}$. The peak overshoot in the unit-step response of the system is approximately equal to

(A) 5%

(B) 20%

(C) 15%

(D) 10%

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 Consider the signal flow graph shown in Fig.2

Find

$$\frac{Y_2}{Y_1}$$

(8+8)

- Q.3 a. Define the terms (i)gain margin and phase margin. How will you find them from Nyquist plot? (10)
 - b. Explain in brief:
 - (i) Constant M-Circles
 - (ii) Evaluation of closed-loop frequency response.

(6)

- Q.4 a. Discuss the effects of P, P-I, P-D and P-I-D controllers on a second-order system. (8)
 - b. Explain in brief the effect of adding a pole or a zero in the left half of s-plane in the open-loop transfer-function G(s) H(s) of a control system on the root-locus diagram.
 (8)
- Q.5 Consider the closed-loop system whose open-loop transfer function is $G(s)H(s) = \frac{Ke^{-2s}}{s}$. Find the maximum value of K for which the system is stable. (16)
- Q.6 Write notes on any <u>TWO</u> of the following:-
 - (i) Uses of opamps for compensation.

(ii) Tuning of PID controllers.

(iii) Standard test signals.

(8+8)

Q.7 a. Give a network that provides lead compensation for a typical control system and explain its features.(8)

b. Distinguish between derivative error and derivative output compensations. (8)

Q.8 A position control system with velocity feedback is shown in Fig.3. What is the response C(t) to unit-step input? (16)

Q.9 a. Sketch the root-loci for the system with

$$G(s) = \frac{K}{(s^2 + 2s + 2)(s^2 + 2s + 5)}, H(s) = 1$$
cross the $j \odot$ -axis.

(12)

b. Explain the terms: Rise time, Peak time and Steady state error as defined for a second-order system. (4)