Digital signal processing-2006

## Question 1

Answer all questions: $[2 \times 10$
(a)

What kind of signal a periodic sine wave is? Why?
(b)

Find the impulse response of the discrete system being represented as

$$
Y(n)=\alpha_{1} x(n)+\alpha_{2} x(n-1)+\alpha_{3} x(n-3)+\alpha_{4} x(n-4)
$$

Where $\mathrm{y}(\mathrm{n})$ is the system output and $\mathrm{x}(\mathrm{n})$ is the input to the system.
(c)

Give a block schematic representation of the linear convolution of two sequences $x(n)$ and $h(n)$.
(d)

Find the condition under which the causal LTI discrete time system with an impulse response $h(n)=\alpha^{n} u(n)$, where $u(n)$ is a unit step sequence is BIBO stable.
(e)

Show that $\mathrm{r}_{\mathrm{xy}}(\mathrm{I})=\mathrm{r}_{\mathrm{xy}}(-\mathrm{I})$
(f)

Bring out the relationship between the correlation and the convolution of two sequences $x(n)$ and $y(n)$.
(g)

Find out the fourier transform of a unit sample sequence $\delta(n)$. plot it.
(h)

What is the bandwidth of a signal occupying the frequency range
$0<\mathrm{w}_{\mathrm{L}}<=|\mathrm{w}|<=\mathrm{w}_{\mathrm{H}}<\Pi$ ?
(i)

What is the DTFT of $r_{x y}(I)$ where $x$ is a real sequence?
(j)

What is the condition for convergence of the z-transform of a sequence $\mathrm{x}(\mathrm{n})$ ? Question 2
[5
(b)

If one LTI system excited with input

$$
X(n)=2 \text { if } n=-1 \text { otherwise } 0
$$

And impulse response given by

$$
H(n)=\delta(n)-\delta(n-1)+\delta(n-4)+\delta(n-5)
$$

Then find out the output response of the system.

## Question 3

(a)

Explain the ITR filter design using impulse invariance method.
(b)

Determine $\mathrm{H}(\mathrm{z})$ if $\mathrm{H}(\mathrm{s})=10 /(\mathrm{s}+2)$ and sampling time 0.01sec. Calculate magnitude and phase of $H(z)$ at $f / 4$ and $f / 2$ where $f_{s}=$ sampling frequency.

Question 4
(a)

Find the z-transform of

$$
X(n)=r^{n} \cos \left(w_{0} n\right) u(n) \text {, where } u(n) \text { is a unit step function. Use }
$$ certain properties of the z-transform to find the transform do not use the direct method of finding the transform. State the properties. [6 (b)

Explain why the z-transform exists for a unit step sequence, while its fourier transform does not exist from the point of view of uniform convergence.

Question 5
(a)

Compute the N -point DFT of the length N sequence

$$
X(n)=\cos (2 \Pi r n / N) \quad 0<=n<=N-1,0<=r<=N-1
$$

(b)

Compute the DTFT of the sequence

$$
Y(n)=(n+1) \alpha^{n} u(n) \quad|\alpha| 1
$$

Question 6
(a)

Describe the decimation-in-time algorithm as used in FFT computation of a sequence $x(n)$. show the steps clearly. What is the advantage of it? [5
(b)

Perform circular convolution of a finite sequence $x_{2}(n)$ of length $N$ and a sequence $x_{1}(n)=\delta\left(n-n_{0}\right)$ where $0<=n_{0}<=N, N=5, n_{0}=1$. Show all the steps clearly. [5

Question 7
(a)

In the estimation of spectrum of a finite duration signal, when the estimate is said to be consistent? Establish the condition of consistency. [5
(b)

Compare the nonrecursive and the recursive realization of a FIR moving average system.

