DIGITAL SIGNAL PROCESSING

SET - A

1.Answer the following questions.
(a). Find the response of the system, if $\mathrm{a}=1, \mathrm{~b}=-1, \mathrm{x}(\mathrm{n})=\operatorname{delta}(\mathrm{n})$ and the system is initial at rest.

(b). Find out the Nyquist rate for the signal $x(t)=2 \% \cos (500$ pi $t)$
(c). What is the stability condition of an LTI system ?
(d). At which band an ideal filter is distortionless ?
(e). How the DFT and DTFT of one discrete time signal related ?
(f). Find out the impulse response of the LTI system given by

$$
\mathrm{y}(\mathrm{n})=\mathrm{k} 1 \mathrm{x}(\mathrm{n})+\mathrm{k} 2 \mathrm{x}(\mathrm{n}-1)+\mathrm{k} 3 \mathrm{x}(\mathrm{n}-2) .
$$

(g). What are the disadvantages of FFT over DFT?
(h). Draw the signal flow graph of a first order digital filter.
(i). Show whether the systems are (i) Linear / Non Linear ,(ii) TV/TIV

$$
\begin{aligned}
& y(n)=\sum_{\substack{n=-\infty \\
x\left(n^{2}\right)}}^{n} x(k) \\
& y(n)=
\end{aligned}
$$

(j). what is the aliasing effect ?
2. (a). Determine the impulse response for the given system described by difference equation

$$
y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)
$$

(b). compute and sketch the step response of the system :

$$
y(n)=1 / M\left(\sum_{k=0}^{N-1} x(n-k)\right)
$$

3. (a).determine convolution of the following pairs of signal by means of ZT.
$\mathrm{X}_{1}(\mathrm{n})=0.5^{\mathrm{n}} \mathrm{u}(\mathrm{n}), \mathrm{X}_{2}(\mathrm{n})=\cos \pi \mathrm{nu}(\mathrm{n})$
(b). Consider the fir filter represented as $y(n)=x(n)+x(n-4)$. Compute and sketch the magnitude and phase spectrum.
4. (a). Let $x(n)$ be a real valued N point sequence. Develop a method to compute a N point DFT $\mathrm{x}^{\prime}(\mathrm{k})$, which contains only the odd harmonics by using a real N/2 point DFT.
(b). Perform linear convolution of the following sequence by overlap method.
$x(n)=\{1,-1,2,-2,3,-3,4,-4\}$
$h(n)=\{1,-1\}$
5. $\quad \mathrm{x}(\mathrm{n})=\delta(\mathrm{n})+2 \delta(\mathrm{n}-1)+\delta(\mathrm{n}-3)$
(i) Find the four point DFT of X(n).
(ii) If $y(n)$ is the four point circular convolution of $x(n)$ with itself, find $y(n)$ and four point DFT $y(k)$.
6. Design an FIR digital filter approximating the ideal low frequency response.

$$
H a(\dot{\omega})= \begin{cases}1, & |\dot{\omega}|=(\pi / 6) \\ 0, & \pi / 6 \leqslant|\hat{\omega}| \leqslant \pi\end{cases}
$$

(i) Determine the coefficients of 25 tap filter based on window method with a rectangular window.
(ii). Plot the magnitude and phase response of the filter.
7. (a). With impulse invariance, a first order pole in $\mathrm{Ha}(\mathrm{s})$ at $\mathrm{s}=\mathrm{sk}$ is mapped to a pole in $\mathrm{H}(\mathrm{z})$ at $\quad Z=e^{s_{k} T}$

$$
\frac{1}{s-s_{k}}=\frac{1}{1-\mathrm{e}^{s_{k} t^{-1}} \mathrm{z}^{-1}}
$$

Determine how a second order pole is mapped with impulse variance.
(b). A second order continuous time filter has a system function

$$
H(s)=1 /(s-a)+1 /(s-b)
$$

where $\mathrm{a}<0 . \mathrm{b}<0$ are real. Determine the location of poles of $\mathrm{H}(\mathrm{z})$ if he filter designed using impulse invariance technique with $\mathrm{T}=2 \mathrm{sec}$.
8. (a). find the direct form II realization for the system described by difference equation.

$$
\mathrm{Y}(\mathrm{n})=3 / 4 \mathrm{y}(\mathrm{n}-1)=3 / 4 \mathrm{y}(\mathrm{n}-2)+\mathrm{x}(\mathrm{n})-1 / 3 \mathrm{x}(\mathrm{n}-1)
$$

(b). explain the power spectrum estimation using he Bartlet method.

SET-B

1.Answer the following questions.
(a). Find the response of the system, if $a=1, b=-1, x(n)=\operatorname{delta}(n)$ and the system is initial at rest.

(b). Find out the Nyquist rate for the signal $x(t)=2 \% \cos (500 p i t)$
(c). What is the stability condition of an LTI system?
(d). At which band an ideal filter is distortionless?
(e). How the DFT and DTFT of one discrete time signal related ?
(f). Find out the impulse response of the LTI system given by

$$
\mathrm{y}(\mathrm{n})=\mathrm{k} 1 \mathrm{x}(\mathrm{n})+\mathrm{k} 2 \mathrm{x}(\mathrm{n}-1)+\mathrm{k} 3 \mathrm{x}(\mathrm{n}-2) .
$$

(g). What are the disadvantages of FFT over DFT ?
(h). Draw the signal flow graph of a first order digital filter.
(i). Show whether the systems are (i) Linear / Non Linear ,(ii) TV/TIV

$$
\begin{aligned}
& \mathrm{y}(\mathrm{n})=\sum_{\substack{\mathrm{k}=-\infty \\
\mathrm{x}\left(\mathrm{n}^{2}\right)}}^{\mathrm{n}} \mathrm{x}(\mathrm{k}) \\
& \mathrm{y}(\mathrm{n})
\end{aligned}
$$

(j). what is the aliasing effect?
2. (a). Determine the impulse response for the given system described by difference equation
$y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)$
(b). compute and sketch the step response of the system :

$$
y(n)=1 / M\left(\sum_{k=0}^{N-1} x(n-k)\right)
$$

3. (a). find the direct form II realization for the system described by difference equation.
$Y(n)=3 / 4 y(n-1)=3 / 4 y(n-2)+x(n)-1 / 3 x(n-1)$
(b). Consider the fir filter represented as $y(n)=x(n)+x(n-4)$. Compute and sketch the magnitude and phase spectrum.
4. (a). Let $x(n)$ be a real valued N point sequence. Develop a method to compute a N point DFT $\mathrm{x}^{\prime}(\mathrm{k})$, which contains only the odd harmonics by using a
real $\mathrm{N} / 2$ point DFT .
(b). Perform linear convolution of the following sequence by overlap method.
$x(n)=\{1,-1,2,-2,3,-3,4,-4\}$
$h(n)=\{1,-1\}$
5. $x(n)=$
(i) Find the four point DFT of $\mathrm{X}(\mathrm{n})$.
(ii) If $y(n)$ is the four point circular convolution of $x(n)$ with itself, find $y(n)$ and four point $\mathrm{DFT} y(\mathrm{k})$.
6. Determine the mean and the autocorrelation of the sequence $x(n)$, which is the output of a ARMA $(1,1)$ process described by difference equation

$$
\mathrm{x}(\mathrm{n})=0.5 \mathrm{x}(\mathrm{n}-1)+\mathrm{w}(\mathrm{n})-\mathrm{w}(\mathrm{n}-1) .
$$

7. For zero mean, jointly Gaussian random variable $\mathrm{X} 1,2, \mathrm{X} 3, \mathrm{X} 4$ it is known that $\mathrm{E}(\mathrm{X} 1 \mathrm{X} 2 \mathrm{X} 3 \mathrm{X} 4)=\mathrm{E}(\mathrm{X} 1 \mathrm{X} 2) \mathrm{E}(\mathrm{X} 3 \mathrm{X} 4)+\mathrm{E}(\mathrm{X} 1 \mathrm{X} 3) \mathrm{E}(\mathrm{X} 2 \mathrm{X} 40+\mathrm{E}(\mathrm{X} 1 \mathrm{X} 4)+\mathrm{E}(\mathrm{X} 2 \mathrm{X} 3)$

Use this result to derive the mean square value of $\mathrm{r}^{\prime} \mathrm{xx}(\mathrm{m})$ and the variance which is

$$
\operatorname{Var}\left[r_{x x}^{\prime}(m)\right]=E\left[\left|r_{x x}^{\prime}(m)^{2}\right|\right]-E\left|\left[r_{x x}^{\prime}(m)\right]\right|
$$

8. Determine the coefficient $\{\mathrm{h}(\mathrm{n})\}$ of a linear phase FIR of length $\mathrm{N}=15$ which has a symmetric unit sample response and a frequency response that

$$
H_{r}\left(\frac{2 \pi k}{15}\right)= \begin{cases}1, & k=0,1,2,3 \\ 0, & k=4,5,6,7\end{cases}
$$

satisfies the condition.

