

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 MICROELECTRONICS & OPTO-ELECTRONIC DEVICES SEMESTER - 4

Time: 3 Hours]	•		Full Marks: 70
inne . o mours j			[Full Marks : 70

GROUP - A

(Multiple Choice Type Questions)

i)	Bila	iteral switch is		
	a)	DIAC	b)	IGBT
	c)	Thyristor	(d)	none of these.
ii)	The	condition, where the major	ority car	rier concentration is greater nea
	Si-S	SiO_{2} interface compared to the	e bulk ir	n the MOSFET is called
	a)	Accumulation	b)	Depletion
	c)	Inversion	d)	None of these.
iii)	Elec	ctron affinity depends on		
	a)	semiconductor material	b)	doping of semiconductor
	c)	applied potential	d)	none of these.
iv)	The	radiative and non-radiative	e life tin	ne of an LED are 2.5 ms and 6
	resp	ectively. The internal quantu	m efficie	ncy is

4643 (16/06)

8/1	3.TECH	(ECE-N)/SEM-4	/EC-405/09

v) .	Phot	odetector is a				
	a)	triangular device	b)	square low device		
	c)	linear device	d)	both (a) and (b).		
vi)	Whi	ch of the following pairs are su	itable f	or making a heterojunction?		
	a)	Si & Ge	b)	Si & GaAs		
	c)	GaAs & AlAs	d)	GaAs & GaAlAs.		
vii)	Meta	al n-type semiconductor form o	ohomic	contact if		
	a)	$\phi_m > \phi_{sn}$	b)	$\phi_m = \phi_{sn}$		
	c)	$\phi_m < \phi_{sn}$	d)	none of these.		
viii)	In c	harge transfer devices, charge	can be	e transferred		
	a)	in any direction	b)	in a predetermined direction		
	c)	by diffusion process	d)	with the help of electric field.		
ix)	In F	P-I-N diode the I part refers to				
	a)	extrinsic substrate	b)	intrinsic substrate		
	c)	intrinsic semiconductor	d)	extrinsic semiconductor.		
x)	ME	MS actuators are devices whic	h is cap	pable to		
	a)	convert mechanical strain into electrical O/P				
	b) convert electrical I/P into mechanical movement					
	c)	convert both from mechanic	al I/P t	to electrical O/P and vice versa		
	d)	convert any form of input en	nergy to	mechanical energy.		
xi)	Wh	When BJT works as an amplifier its operation is confined to				
	a)	Cut-off region	b)	Saturation region	* .	
	c)	Active region	d)	Both (a) and (b).	<u></u>	

- xii) The equivalent circuit of an IGBT consists of
 - a) two bipolar transistors
 - b) two MOS transistors
 - c) one MOS transistor and one bipolar transistor
 - d) two bipolar transistors with one MOS transistor.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following questions.

 $3 \times 5 = 15$

- 2. a) What is SCR? Point out its major uses.
 - b) By using two transistor analogy, briefly describe the basic operation of two terminal SCR.
- 3. What is the disadvantage of lateral DMOS structure? Why VDMOS has higher packing density than LDOS? 2+3
- 4. What is population inversion? The population in two energy levels E_1 & E_2 are N_1 & N_2 respectively. Express the ratio N_1 / N_2 under normal condition assuming Boltzman statistics. $2\frac{1}{2}+2\frac{1}{2}$
- 5. What is ambipolar transport? Why carrier generation and recombination rate are same in thermal equilibrium? 3+2
- 6. What is dynamic effects in MOS capacitors? What are the applications of CCD?

3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) What are the differences between Schottky junction diode and normal p-n junction diode?
 - b) With energy band diagram describe Schottky junction barrier formation.

 Describe its operation under external bias.
 - c) What is semiconductor heterojunction? Point out the classification of the same.
 - d) A Schottky diode made from tungsten and n-type Si with doping $N_d = 10^{-16}$ cm⁻³. If the work functions of the metal is 4.55 V and Si electron affinity is 4.01 V, calculate
 - i) barrier height
 - ii) built-in potential barrier
 - iii) space charge with and
 - iv) maximum electric field

at the junction under zero applied bias at T = 300 K.

$$2 + (2 + 3) + (2 + 2) + 4$$

- 8. a) What is MEMS?
 - b) What is micromachining technique?
 - c) Discuss in detail about different micromachining techniques.
 - d) Discuss the photolithography process in connection with VLSI technology.

1 + 1 + 9 + 4

- 9. a) Distinguish between direct and indirect band-gap materials. Which one is useful for the design of optoelectronic devices and why?
 - b) What are the advantages of LASER over LED?
 - c) With diagram, explain briefly the operation of semiconductor laser.
 - d) An optical intensity of 10 W/cm² at $\lambda \sim 0.75$ µm is allowed to incident on a GaAS based photodetector. Calculate the carrier generation rate at 300 K. For GaAs, $\alpha \sim 7 \times 10^3$ cm⁻¹ and $E_a \sim 1.43$ eV. (2+2)+2+(2+4)+3
- 10. a) Explain the operation of CMOS as an inverter with circuit diagram.
 - b) How does CCD act practically in single phase and two phase arrangements?
 - c) Describe the operation of insulated gate bipolar junction transistor (IGBT) with basic structure. 5 + (3 + 2) + 5
- 11. Write short note on any three of the following:

 3×5

- a) MEMS pressure sensor
- b) OEIC
- c) 2D electron gas
- d) Solar cell
- e) MOSFET scaling.

END